Article

Species differences in the expression of Ahi1, a protein implicated in the neurodevelopmental disorder Joubert syndrome, with preferential accumulation to stigmoid bodies

Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
The Journal of Comparative Neurology (Impact Factor: 3.51). 11/2008; 511(2):238-56. DOI: 10.1002/cne.21824
Source: PubMed

ABSTRACT Joubert syndrome (JBTS) is an autosomal recessive disorder characterized by cerebellum and brainstem malformations. Individuals with JBTS have abnormal breathing and eye movements, ataxia, hypotonia, and cognitive difficulty, and they display mirror movements. Mutations in the Abelson-helper integration site-1 gene (AHI1) cause JBTS in humans, suggesting that AHI1 is required for hindbrain development; however AHI1 may also be required for neuronal function. Support for this idea comes from studies demonstrating that the AHI1 locus is associated with schizophrenia. To gain further insight into the function of AHI1 in both the developing and mature central nervous system, we determined the spatial and temporal expression patterns of the gene products of AHI1 orthologs throughout development, in human, mouse, and zebrafish. Murine Ahi1 was distributed throughout the cytoplasm, dendrites, and axons of neurons, but was absent in glial cells. Ahi1 expression in the mouse brain was observed as early as embryonic day 10.5 and persisted into adulthood, with peak expression during the first postnatal week. Murine Ahi1 was observed in neurons of the hindbrain, midbrain, and ventral forebrain. Generally, the AHI1/Ahi1/ahi1 orthologs had a conserved distribution pattern in human, mouse, and zebrafish, but mouse Ahi1 was not present in the developing and mature cerebellum. Ahi1 was also observed consistently in the stigmoid body, a poorly characterized cytoplasmic organelle found in neurons. Overall, these results suggest roles for AHI1 in neurodevelopmental processes that underlie most of the neuroanatomical defects in JBTS, and perhaps in neuronal functions that contribute to schizophrenia.

0 Followers
 · 
118 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: First Page of the Article
    Norchip Conference, 2004. Proceedings; 12/2004
  • [Show abstract] [Hide abstract]
    ABSTRACT: The stigmoid body (STB) is a neurocytoplasmic inclusion containing huntingtin-associated protein 1 (HAP1), an interactor of huntingtin, and its formation is induced by transfection of HAP1-cDNA into cultured cells. Although STB is believed to play a protective role in polyglutamine diseases, including Huntington's disease and spinal and bulbar muscular atrophy, by sequestering the causative proteins, huntingtin and androgen receptor, respectively, its physiological function and formation remain poorly understood. Therefore, STB is occasionally confused with another cytoplasmic inclusion observed in polyglutamine diseases, the aggresome. Here we examined the subcellular dynamics of STB and compared it immunohistochemically and cytochemically with the aggresome in the rat brain and COS-7 or HeLa cells transfected with HAP1 and/or polyglutamine disease-associated genes. In time-lapse image analysis of HAP1-transfected cells, the HAP1-induced STB is formed from multiple fusions of small HAP1 inclusions characterized by vigorous cytoplasmic movement. In HAP1-transfected cells treated with a microtubule-depolymerizing drug, although the formation of small HAP1 inclusions was not affected, their fusion was critically inhibited. Immunohistochemistry and cytochemistry revealed the absence of association between STB and aggresomal markers, such as ubiquitin/proteasome, intermediate filaments, and the centrosome. Taken together, we concluded that STB is formed by a two-step process comprising microtubule-independent formation of small HAP1 inclusions and microtubule-dependent fusion of these inclusions, and that STB is distinct from pathological aggresomes.
    Histochemie 08/2009; 132(3):305-18. DOI:10.1007/s00418-009-0618-9 · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The primary non-motile cilium, a membrane-ensheathed, microtubule-bundled organelle, extends from virtually all cells and is important for development. Normal functioning of the cilium requires proper axoneme assembly, membrane biogenesis and ciliary protein localization, in tight coordination with the intraflagellar transport system and vesicular trafficking. Disruptions at any level can induce severe alterations in cell function, giving rise to a myriad of human genetic diseases known as ciliopathies. Here we show that the Abelson helper integration site 1 (Ahi1) gene, whose human ortholog is mutated in Joubert syndrome, regulates cilium formation via its interaction with Rab8a, a small GTPase critical for polarized membrane trafficking. We find that the Ahi1 protein localizes to a single centriole, the mother centriole, which becomes the basal body of the primary cilium. In order to determine whether Ahi1 functions in ciliogenesis, loss of function analysis of Ahi1 was performed in cell culture models of ciliogenesis. Knockdown of Ahi1 expression by shRNAi in cells or targeted deletion of Ahi1 (Ahi1 knockout mouse) leads to impairments in ciliogenesis. In Ahi1-knockdown cells, Rab8a is destabilized and does not properly localize to the basal body. Since Rab8a is implicated in vesicular trafficking, we next examined this process in Ahi1-knockdown cells. Defects in the trafficking of endocytic vesicles from the plasma membrane to the Golgi and back to the plasma membrane were observed in Ahi1-knockdown cells. Overall, our data indicate that the distribution and functioning of Rab8a is regulated by Ahi1, not only affecting cilium formation, but also vesicle transport.
    Human Molecular Genetics 08/2009; 18(20):3926-41. DOI:10.1093/hmg/ddp335 · 6.68 Impact Factor