Article

Recurrent Rearrangements of Chromosome 1q21.1 and Variable Pediatric Phenotypes

University of Washington School of Medicine, Seattle 98195, USA.
New England Journal of Medicine (Impact Factor: 54.42). 10/2008; 359(16):1685-99. DOI: 10.1056/NEJMoa0805384
Source: PubMed

ABSTRACT Duplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients.
We tested for the presence of microdeletions and microduplications at a specific region of chromosome 1q21.1 in two groups of patients with unexplained mental retardation, autism, or congenital anomalies and in unaffected persons.
We identified 25 persons with a recurrent 1.35-Mb deletion within 1q21.1 from screening 5218 patients. The microdeletions had arisen de novo in eight patients, were inherited from a mildly affected parent in three patients, were inherited from an apparently unaffected parent in six patients, and were of unknown inheritance in eight patients. The deletion was absent in a series of 4737 control persons (P=1.1x10(-7)). We found considerable variability in the level of phenotypic expression of the microdeletion; phenotypes included mild-to-moderate mental retardation, microcephaly, cardiac abnormalities, and cataracts. The reciprocal duplication was enriched in nine children with mental retardation or autism spectrum disorder and other variable features (P=0.02). We identified three deletions and three duplications of the 1q21.1 region in an independent sample of 788 patients with mental retardation and congenital anomalies.
We have identified recurrent molecular lesions that elude syndromic classification and whose disease manifestations must be considered in a broader context of development as opposed to being assigned to a specific disease. Clinical diagnosis in patients with these lesions may be most readily achieved on the basis of genotype rather than phenotype.

Download full-text

Full-text

Available from: Corrado Romano, Jun 29, 2015
2 Followers
 · 
394 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present population-based study examines associations between epilepsy and autism spectrum disorders (ASD). The cohort includes register data of 4,705 children born between 1987 and 2005 and diagnosed as cases of childhood autism, Asperger's syndrome or pervasive developmental disorders-not otherwise specified. Each case was matched to four controls by gender, date of birth, place of birth, and residence in Finland. Epilepsy was associated with ASD regardless of the subgroup after adjusting for covariates. The associations were stronger among cases with intellectual disability, especially among females. Epilepsy's age at onset was similar between the cases and controls regardless of the ASD subgroup. These findings emphasize the importance to examine the neurodevelopmental pathways in ASD, epilepsy and intellectual disability.
    Journal of Autism and Developmental Disorders 05/2014; 44(10). DOI:10.1007/s10803-014-2126-6 · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromosomal microarray analysis (CMA) is now established as the first-tier cytogenetic diagnostic test for fast and accurate detection of chromosomal abnormalities in patients with developmental delay/intellectual disability (DD/ID), multiple congenital anomalies (MCA), and autism spectrum disorders (ASD). We present our experience with using CMA for postnatal and prenatal diagnosis in Estonian patients during 2009-2012. Since 2011, CMA is on the official service list of the Estonian Health Insurance Fund and is performed as the first-tier cytogenetic test for patients with DD/ID, MCA or ASD. A total of 1191 patients were analyzed, including postnatal (1072 [90%] patients and 59 [5%] family members) and prenatal referrals (60 [5%] fetuses). Abnormal results were reported in 298 (25%) patients, with a total of 351 findings (1-3 per individual): 147 (42%) deletions, 106 (30%) duplications, 89 (25%) long contiguous stretches of homozygosity (LCSH) events (>5 Mb), and nine (3%) aneuploidies. Of all findings, 143 (41%) were defined as pathogenic or likely pathogenic; for another 143 findings (41%), most of which were LCSH, the clinical significance remained unknown, while 61 (18%) reported findings can now be reclassified as benign or likely benign. Clinically relevant findings were detected in 126 (11%) patients. However, the proportion of variants of unknown clinical significance was quite high (41% of all findings). It seems that our ability to detect chromosomal abnormalities has far outpaced our ability to understand their role in disease. Thus, the interpretation of CMA findings remains a rather difficult task requiring a close collaboration between clinicians and cytogeneticists.
    03/2014; 2(2):166-75. DOI:10.1002/mgg3.57
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies in schizophrenia have recently made significant progress in our understanding of the complex genetic architecture of this disorder. Many genetic loci have been identified and now require functional investigation. One approach involves studying their correlation with neuroimaging and neurocognitive endophenotypes. Theory of Mind (ToM) deficits are well established in schizophrenia and they appear to fulfill criteria for being considered an endophenotype. We aim to review the behavioural and neuroimaging-based studies of ToM in schizophrenia, assess its suitability as an endophenotype, discuss current findings, and propose future research directions. Suitable research articles were sourced from a comprehensive literature search and from references identified through other studies. ToM deficits are repeatable, stable, and heritable: First-episode patients, those in remission and unaffected relatives all show deficits. Activation and structural differences in brain regions believed important for ToM are also consistently reported in schizophrenia patients at all stages of illness, although no research to date has examined unaffected relatives. Studies using ToM as an endophenotype are providing interesting genetic associations with both single nucleotide polymorphisms (SNPs) and specific copy number variations (CNVs) such as the 22q11.2 deletion syndrome. We conclude that ToM is an important cognitive endophenotype for consideration in future studies addressing the complex genetic architecture of schizophrenia, and may help identify more homogeneous clinical sub-types for further study.
    Genes Brain and Behavior 08/2013; 13(1). DOI:10.1111/gbb.12066 · 3.51 Impact Factor