Article

Updated survival analyses after prolonged follow-up of the phase 2, multicenter CREST study of bortezomib in relapsed or refractory multiple myeloma

St Vincent's Comprehensive Cancer Center, New York, NY 10011, USA.
British Journal of Haematology (Impact Factor: 4.96). 10/2008; 143(4):537-40. DOI: 10.1111/j.1365-2141.2008.07359.x
Source: PubMed

ABSTRACT The Clinical Response and Efficacy Study of Bortezomib in the Treatment of Relapsing Multiple Myeloma (CREST) demonstrated substantial activity with two dose levels of bortezomib (1.0 and 1.3 mg/m(2)), alone or with dexamethasone, in relapsed or refractory multiple myeloma. We present updated survival analyses after prolonged follow-up (median >5 years). One- and 5-year survival rates were 82% and 32%, respectively, in the 1.0 mg/m(2) group (n = 28), and 81% and 45%, respectively, in the 1.3 mg/m(2) group (n = 26). Notable survival, response, and time-to-progression data suggest that a bortezomib starting dose of 1.3 mg/m(2) is preferred. If bortezomib dose reduction is required, the 1.0 mg/m(2) dose still offers patients a substantial survival benefit.

Download full-text

Full-text

Available from: Dixie Esseltine, Jul 05, 2015
0 Followers
 · 
64 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the last ten years, the proteasome has become one of the most attractive targets for the treatment of several cancer malignancies. Like other types of antineoplastic agents, proteasome inhibitors cause toxic peripheral neuropathy, which indeed is one of the limiting side effects of these treatments, and which thus curtails its potential effectiveness. Bortezomib was the first proteasome inhibitor approved for clinical use and is currently the first line treatment for multiple myeloma. The incidence of neuropathy induced by bortezomib is around 30 to 60%. Although the neurotoxic mechanisms are not completely understood, experimental studies suggest that aggresome formation, endoplasmic reticulum stress, mitotoxicity, inflammatory response, and DNA damage could contribute to this neurotoxicity. Additionally, the second generation of proteasome inhibitors, headed by carfilzomib, is currently being developed in order to reduce the toxic profile, with promising results. However, more extensive clinical experience and further experimental research are needed in order to determine the potential benefits of the second generation over bortezomib. The present review summarizes the main clinical features and mechanistic events related to the neuropathy induced by proteasome-inhibitors.
    NeuroToxicology 07/2014; 43. DOI:10.1016/j.neuro.2014.02.001 · 3.05 Impact Factor
  • Source
    International journal of clinical pharmacology and therapeutics 07/2010; 48(7):494-6. DOI:10.5414/CPP48494 · 1.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bortezomib, a proteasome inhibitor, is an antineoplastic drug to treat multiple myeloma and mantle cell lymphoma. Its most clinically significant adverse event is peripheral sensory neuropathy. Our objective was to characterize the neuropathy induced by bortezomib in a mouse model. Two groups were used; one group received vehicle solution and another bortezomib (1mg/kg/twice/week) for 6weeks (total dose as human schedule). Tests were performed during treatment and for 4weeks post dosing to evaluate electrophysiological, autonomic, pain sensibility and sensory-motor function changes. At the end of treatment and after washout, sciatic and tibial nerves, dorsal ganglia and intraepidermal innervation were analyzed. Bortezomib induced progressive significant decrease of sensory action potential amplitude, mild reduction of sensory velocities without effect in motor conductions. Moreover, it significantly increased pain threshold and sensory-motor impairment at 6weeks. According to these data, histopathological findings shown a mild reduction of myelinated (-10%; p=0.001) and unmyelinated fibers (-27%; p=0.04), mostly involving large and C fibers, with abnormal vesicular inclusion body in unmyelinated axons. Neurons were also involved as shown by immunohistochemical phenotypic switch. After washout, partial recovery was observed in functional, electrophysiological and histological analyses. These results suggest that axon and myelin changes might be secondary to an initial dysfunctional neuronopathy.
    Experimental Neurology 02/2010; 223(2):599-608. DOI:10.1016/j.expneurol.2010.02.006 · 4.62 Impact Factor