High-dose dietary supplementation of vitamin A induces brain-derived neurotrophic factor and nerve growth factor production in mice with simultaneous deficiency of vitamin A and zinc

Department of Nutrition and Metabolism, University of Tokushima Graduate School, Tokushima, Japan.
Nutritional Neuroscience (Impact Factor: 2.11). 11/2008; 11(5):228-34. DOI: 10.1179/147683008X301603
Source: PubMed

ABSTRACT Marginal vitamin A and zinc (Zn) deficiency often co-exist in many populations. Vitamin A plays a trophic role in brain and is important for its development. We investigated effects of dietary supplementation of vitamin A on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) production in mice depleted for vitamin A and Zn. After 3 months' feeding with a low vitamin A and Zn (LVA-LZ) diet, mice were divided into two groups and replenished with either normal or high vitamin A with low Zn diet for an additional 2 months. Levels of BDNF and NGF were measured from extracts of hippocampus, cortex and cerebellum at the end of the third and fifth months. The LVA-LZ group tended to show decreased amounts of the BDNF and NGF, while animals supplemented with high vitamin A along with Zn deficiency had high BDNF and NGF concentrations. From these results, we conclude that vitamin A may increase BDNF and NGF levels.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zn deficiency is a common disease leading to memory impairment with increasing age. This study evaluated the protection effects of red mold rice (RMR) administration and Zn supplementation against memory and learning ability impairments from oxidative stress caused by Zn deficiency. Rats (4 weeks old) were induced to be Zn deficiency by a Zn-deficient diet for 12 weeks. After that, rats were administered Zn, 1xRMR, 5xRMR, and various dosages of RMR plus Zn, respectively. Decreases of antioxidant enzyme activities in the hippocampus and cortex were observed, and the levels of Ca, Fe, and Mg were increased in the hippocampus and cortex of Zn-deficient rats, leading to memory and learning ability injury. However, the administration of RMR (1- or 5-fold dosage) and with or without Zn significantly improved the antioxidase and neural activity to maintain cortex and hippocampus functions. This study demonstrates that RMR is a possible functional food for the prevention or cure of neural injury associated with Zn deficiency.
    Journal of Agricultural and Food Chemistry 10/2009; 57(22):10600-7. DOI:10.1021/jf902046s · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The major Alzheimer's disease susceptibility genes (APOE, clusterin, complement receptor 1 (CR1) and phosphatidylinositol binding clathrin assembly protein, PICALM) can be implicated directly (APOE, CR1) or indirectly (clusterin and PICALM) in the herpes simplex life cycle. The virus binds to proteoliposomes containing APOE or APOA1 and also to CR1, and both clusterin and PICALM are related to a mannose-6-phosphate receptor used by the virus for cellular entry and intracellular transport. PICALM also binds to a nuclear exportin used by the virus for nuclear egress. Clusterin and complement receptor 1 are both related to the complement pathways and play a general role in pathogen defence. In addition, the amyloid precursor protein APP is involved in herpes viral transport and gamma-secretase cleaves a number of receptors used by the virus for cellular entry. APOE, APOA1 and clusterin, or alpha 2-macroglobulin, insulysin and caspase 3, which also bind to the virus, are involved in beta-amyloid clearance or degradation, as are the viral binding complement components, C3 and CR1. There are multiple ways in which the products of key susceptibility genes might be able to modify the viral life cycle and in turn the virus interacts with key proteins involved in APP and beta-amyloid processing. These interactions support a role for the herpes simplex virus in Alzheimer's disease pathology and suggest that antiviral agents or vaccination might be considered as viable therapeutic strategies in Alzheimer's disease.
    Neuroscience Letters 10/2010; 483(2):96-100. DOI:10.1016/j.neulet.2010.07.066 · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease susceptibility genes, APP and gamma-secretase, are involved in the herpes simplex life cycle, and that of other suspect pathogens (C. pneumoniae, H. pylori, C. neoformans, B. burgdorferri, P. gingivalis) or immune defence. Such pathogens promote beta-amyloid deposition and tau phosphorylation and may thus be causative agents, whose effects are conditioned by genes. The antimicrobial effects of beta-amyloid, the localisation of APP/gamma-secretase in immunocompetent dendritic cells, and gamma secretase cleavage of numerous pathogen receptors suggest that this network is concerned with pathogen disposal, effects which may be abrogated by the presence of beta-amyloid autoantibodies in the elderly. These autoantibodies, as well as those to nerve growth factor and tau, also observed in Alzheimer's disease, may well be antibodies to pathogens, due to homology between human autoantigens and pathogen proteins. NGF or tau antibodies promote beta-amyloid deposition, neurofibrillary tangles, or cholinergic neuronal loss, and, with other autoantibodies, such as anti-ATPase, are potential agents of destruction, whose formation is dictated by sequence homology between pathogen and human proteins, and thus by pathogen strain and human genes. Pathogen elimination in the ageing population and removal of culpable autoantibodies might reduce the incidence and offer hope for a cure in this affliction.
    01/2011; 2011:501862. DOI:10.4061/2011/501862