Striatal and extrastriatal dopamine in the basal ganglia: An overview of its anatomical organization in normal and Parkinsonian brains

Yerkes National Primate Research Center and Department of Neurology, Emory University, Atlanta, Georgia, USA.
Movement Disorders (Impact Factor: 5.63). 01/2008; 23 Suppl 3(S3):S534-47. DOI: 10.1002/mds.22027
Source: PubMed

ABSTRACT Degeneration of the nigrostriatal dopaminergic system is the characteristic neuropathological feature of Parkinson's disease and therapy is primarily based on a dopamine replacement strategy. Dopamine has long been recognized to be a key neuromodulator of basal ganglia function, essential for normal motor activity. The recent years have witnessed significant advances in our knowledge of dopamine function in the basal ganglia. Although the striatum remains the main functional target of dopamine, it is now appreciated that there is dopaminergic innervation of the pallidum, subthalamic nucleus, and substantia nigra. A new dopaminergic- thalamic system has also been uncovered, setting the stage for a direct dopamine action on thalamocortical activity. The differential distribution of D1 and D2 receptors on neurons in the direct and indirect striato-pallidal pathways has been re-emphasized, and cholinergic interneurons are recognized as an intermediary mediator of dopamine-mediated communication between the two pathways. The importance and specificity of dopamine in regulating morphological changes in striatal projection neurons provides further evidence for the complex and multifarious mechanisms through which dopamine mediates its functional effects in the basal ganglia. In this review, the role of basal ganglia dopamine and its functional relevance in normal and pathological conditions will be discussed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is a neurological disorder characterized by the manifestation of motor symptoms, such as akinesia, muscle rigidity and tremor at rest. These symptoms are classically attributed to the degeneration of dopamine neurons in the pars compacta of substantia nigra (SNc), which results in a marked dopamine depletion in the striatum. It is well established that dopamine neurons in the SNc innervate not only the striatum, which is the main target, but also other basal ganglia nuclei including the two segments of globus pallidus and the subthalamic nucleus (STN). The role of dopamine and its depletion in the striatum is well known, however, the role of dopamine depletion in the pallidal complex and the STN in the genesis of their abnormal neuronal activity and in parkinsonian motor deficits is still not clearly determined. Based on recent experimental data from animal models of Parkinson's disease in rodents and non-human primates and also from parkinsonian patients, this review summarizes current knowledge on the role of dopamine in the modulation of basal ganglia neuronal activity and also the role of dopamine depletion in these nuclei in the pathophysiology of Parkinson's disease.
    Frontiers in Aging Neuroscience 05/2014; 6:87. DOI:10.3389/fnagi.2014.00087 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review covers the intrinsic organization and afferent and efferent connections of the midbrain dopaminergic complex, comprising the substantia nigra, ventral tegmental area and retrorubral field, which house, respectively, the A9, A10 and A8 groups of nigrostriatal, mesolimbic and mesocortical dopaminergic neurons. In addition, A10dc (dorsal, caudal) and A10rv (rostroventral) extensions into, respectively, the ventrolateral periaqueductal gray and supramammillary nucleus are discussed. Associated intrinsic and extrinsic connections of the midbrain dopaminergic complex that utilize gamma-aminobutyric acid (GABA), glutamate and neuropeptides and various co-expressed combinations of these compounds are considered in conjunction with the dopamine-containing systems. A framework is provided for understanding the organization of masssive afferent systems descending and ascending to the midbrain dopaminergic complex from the telencephalon and brainstem, respectively. Within the context of this framework, the basal ganglia direct and indirect output pathways are treated in some detail. Findings from rodent brain are briefly compared with those from primates, including human. Recent literature is emphasized, including traditional experimental neuroanatomical and modern gene transfer and optogenetic studies. An attempt was made to provide sufficient background and cite a representative sampling of earlier primary papers and reviews so that people new to the field may find this to be a relatively comprehensive treatment of the subject.
    Neuroscience 04/2014; 282. DOI:10.1016/j.neuroscience.2014.04.010 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Elevated in vivo markers of presynaptic striatal dopamine activity have been a consistent finding in schizophrenia, and include a large effect size elevation in dopamine synthesis capacity. However, it is not known if the dopaminergic dysfunction is limited to the striatal terminals of dopamine neurons, or is also evident in the dopamine neuron cell bodies, which mostly originate in the substantia nigra. The aim of our studies was therefore to determine whether dopamine synthesis capacity is altered in the substantia nigra of people with schizophrenia, and how this relates to symptoms. In a post-mortem study, a semi-quantitative analysis of tyrosine hydroxylase staining was conducted in nigral dopaminergic cells from post-mortem tissue from patients with schizophrenia (n = 12), major depressive disorder (n = 13) and matched control subjects (n = 13). In an in vivo imaging study, nigral and striatal dopaminergic function was measured in patients with schizophrenia (n = 29) and matched healthy control subjects (n = 29) using (18)F-dihydroxyphenyl-l-alanine ((18)F-DOPA) positron emission tomography. In the post-mortem study we found that tyrosine hydroxylase staining was significantly increased in nigral dopaminergic neurons in schizophrenia compared with both control subjects (P < 0.001) and major depressive disorder (P < 0.001). There was no significant difference in tyrosine hydroxylase staining between control subjects and patients with major depressive disorder, indicating that the elevation in schizophrenia is not a non-specific indicator of psychiatric illness. In the in vivo imaging study we found that (18)F-dihydroxyphenyl-l-alanine uptake was elevated in both the substantia nigra and in the striatum of patients with schizophrenia (effect sizes = 0.85, P = 0.003 and 1.14, P < 0.0001, respectively) and, in the voxel-based analysis, was elevated in the right nigra (P < 0.05 corrected for family wise-error). Furthermore, nigral (18)F-dihydroxyphenyl-l-alanine uptake was positively related with the severity of symptoms (r = 0.39, P = 0.035) in patients. However, whereas nigral and striatal (18)F-dihydroxyphenyl-l-alanine uptake were positively related in control subjects (r = 0.63, P < 0.001), this was not the case in patients (r = 0.30, P = 0.11). These findings indicate that elevated dopamine synthesis capacity is seen in the nigral origin of dopamine neurons as well as their striatal terminals in schizophrenia, and is linked to symptom severity in patients.
    Brain 10/2013; DOI:10.1093/brain/awt264 · 10.23 Impact Factor

Similar Publications