Article

12-Lipoxygenase-knockout mice are resistant to inflammatory effects of obesity induced by Western diet.

Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
AJP Endocrinology and Metabolism (Impact Factor: 4.09). 10/2008; 295(5):E1065-75. DOI: 10.1152/ajpendo.90371.2008
Source: PubMed

ABSTRACT Inflammation is a key pathological process in the progression of atherosclerosis and type 2 diabetes. 12/15-lipoxygenase (12-LO), an enzyme involved in fatty acid metabolism, may contribute to inflammatory damage triggered by stressors such as obesity and insulin resistance. We hypothesized that mice lacking 12-LO are protected against inflammatory-mediated damage associated with a "western" diet. To test this hypothesis, age-matched male 12-LO knockout (12-LOKO) and wild-type C57BL/6 (B6) mice were fed either a standard chow or western diet and assessed for several inflammatory markers. Western-fed B6 mice showed expected reductions in glucose and insulin tolerance compared with chow-fed mice. In contrast, western-fed 12-LOKO mice maintained glucose and insulin tolerance similar to chow-fed mice. Circulating proinflammatory cytokines, tumor necrosis factor-alpha and interleukin-6, were increased in western B6 mice but not 12-LOKO mice, whereas the reported protective adipokine, adiponectin, was decreased only in western B6 mice. 12-LO activity was significantly elevated by western diet in islets from B6 mice. Islets from 12-LOKO mice did not show western-diet-induced islet hyperplasia or increases in caspase-3 apoptotic staining observed in western-fed B6 mice. Islets from 12-LOKO mice were also protected from reduced glucose-stimulated insulin secretion observed in islets from western-fed B6 mice. In visceral fat, macrophage numbers and monocyte chemoattractant protein-1 expression were elevated in western B6 mice but not 12-LOKO mice. These data suggest that 12-LO activation plays a role in western-diet-induced damage in visceral fat and islets. Inhibiting 12-LO may provide a new therapeutic approach to prevent inflammation-mediated metabolic consequences of excess fat intake.

0 Followers
 · 
375 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation is a pathological feature of the pancreatic islet in type 1 and 2 diabetes, contributing to islet endocrine cell failure and the onset of hyperglycaemia in both diseases. Indeed, numerous immune targets have recently been found to be altered in type 2 diabetes, but few have yet to be translated to the clinic. Taylor-Fishwick and colleagues aimed to change this by performing proof-of-concept studies investigating the efficacy of small molecule inhibitors of 12-lipoxygenase in rodent and human beta cells exposed to proinflammatory cytokines. The results of these studies, published in this issue of Diabetologia (DOI: 10.1007/s00125-014-3452-0 ), build on a wealth of preclinical data that have implicated 12-lipoxygenase in rodent models of type 1 and 2 diabetes. While there remain some unanswered mechanistic questions regarding how cytokines regulate 12-lipoxygenase activation and the downstream consequences of activation, it is hoped that future studies with newly identified selective inhibitors may overcome the in vitro limitations of this study and allow for the eventual clinical translation of these highly interesting findings.
    Diabetologia 12/2014; 58(3). DOI:10.1007/s00125-014-3482-7 · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective. Dyslipidemia may contribute to the development of peripheral neuropathy, even in prediabetics; however, few studies have evaluated vascular dysfunction and oxidative stress in patients with peripheral neuropathy. Methods. Using high-fat diet- (HFD-) induced prediabetic C57BL/6 mice, we assessed motor and sensory nerve conduction velocity (NCV) using a BIOPAC System and thermal algesia with a Plantar Test (Hargreaves' method) Analgesia Meter. Intraepidermal nerve fiber density and mean dendrite length were tested following standard protocols. Vascular endothelial growth factor-A (VEGF-A) and 12/15-lipoxygenase (12/15-LOX) were evaluated by immunohistochemistry and Western blot, respectively. Results. HFD-fed mice showed deficits in motor and sensory NCV, thermal hyperalgesia, reduced mean dendrite length, and VEGF-A expression in the plantar skin and increased 12/15-LOX in the sciatic nerve (P < 0.05 compared with controls). Conclusion. HFD may cause large myelinated nerve and small sensory nerve fiber damage, thus leading to neuropathy. The mean dendrite length may be a more sensitive marker for early detection of peripheral neuropathy. Reduced blood supply to the nerves and increased oxidative stress may contribute to the development and severity of peripheral neuropathy.
    International Journal of Endocrinology 01/2014; 2014:305205. DOI:10.1155/2014/305205 · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOX oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance."
    Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 10/2014; 1851(4). DOI:10.1016/j.bbalip.2014.10.002 · 4.50 Impact Factor

Preview

Download
0 Downloads