An oncogenic role for the multiple endocrine neoplasia type 1 gene in prostate cancer.

Department of Urology, University of California at San Francisco Comprehensive Cancer Center, UCSF, San Francisco, CA 94143, USA.
Prostate cancer and prostatic diseases (Impact Factor: 2.83). 10/2008; 12(2):184-91. DOI: 10.1038/pcan.2008.45
Source: PubMed

ABSTRACT Prostate cancer is the second leading cause of cancer related deaths in US men, largely because of metastasis, which is ultimately fatal. A better understanding of metastasis biology will lead to improved prognostication and therapeutics. We previously reported 11q13.1 gain was independently predictive of recurrence after radical prostatectomy. Multiple endocrine neoplasia I (MEN1) maps to this region of copy number gain in aggressive prostate tumors and was shown to be the only gene at this locus at increased expression in prostate cancer. Here, we demonstrate an oncogenic role for MEN1 in prostate cancer using a variety of independent assays.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the prognostic role of genomic stability and copy number alterations (CNAs) pancreatic neuroendocrine tumors (PanNETs). A high-resolution array-based comparative genomic hybridization approach was utilized in order to investigate and quantify chromosomal aberrations in a panel of 37 primary PanNET and 11 metastatic samples. DNA samples were extracted from formalin-fixed and paraffin-embedded tumor specimen. Genomic findings were correlated with histopathological and immunohistochemical data. Moreover, the dataset was subjected to employing an unsupervised hierarchical clustering analysis approach utilizing Euclidean distance and average linkage and associations between genomically defined tumor groups and recurrent CNAs or clinicopathological features of the study group were assessed. Numerous chromosomal aberrations were recurrently detected in both, primary tumor samples and metastases. Copy number gains were most frequently observed at 06p22.2-p22.1 (27.1%), 17p13.1 (20.8%), 07p21.3-p21.2 (18.8%), 09q34.11 (18.8%). Genomic losses were significantly less frequent and the only recurrent aberration affected 08q24.3 (6.3%). Moreover, we detected a high degree of genomic heterogeneity between primary tumors and metastatic lesions. Unsupervised hierarchical clustering of loci affected by CNAs in more than 3 primary tumor samples revealed two genetically distinct tumor groups as well as two chromosomal clusters of genomic imbalances indicating a small subset of tumors with common molecular features (13.5%). Aberrations affecting 6p22.2-22.1, 8q24.3, 9q34.11 and 17p13.1 (P = 0.011; 0.003; 0.003; 0.001), were significantly associated with a poorer survival prognosis. This study suggests that several frequent CNAs in numerous candidate regions are involved in the pathogenesis and metastatic progression of PanNET.
    Experimental and Clinical Endocrinology & Diabetes 12/2014; 20(46):17498-506. DOI:10.3748/wjg.v20.i46.17498 · 1.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gauging the risk of developing progressive disease is a major challenge in prostate cancer patient management. We used genetic markers to understand genomic alteration dynamics during disease progression. By using a novel, advanced, multicolor fluorescence in situ hybridization approach, we enumerated copy numbers of six genes previously identified by array comparative genome hybridization to be involved in aggressive prostate cancer [TBL1XR1, CTTNBP2, MYC (alias c-myc), PTEN, MEN1, and PDGFB] in six nonrecurrent and seven recurrent radical prostatectomy cases. An ERG break-apart probe to detect TMPRSS2-ERG fusions was included. Subsequent hybridization of probe panels and cell relocation resulted in signal counts for all probes in each individual cell analyzed. Differences in the degree of chromosomal and genomic instability (ie, tumor heterogeneity) or the percentage of cells with TMPRSS2-ERG fusion between samples with or without progression were not observed. Tumors from patients that progressed had more chromosomal gains and losses, and showed a higher degree of selection for a predominant clonal pattern. PTEN loss was the most frequent aberration in progressors (57%), followed by TBL1XR1 gain (29%). MYC gain was observed in one progressor, which was the only lesion with an ERG gain, but no TMPRSS2-ERG fusion. According to our results, a probe set consisting of PTEN, MYC, and TBL1XR1 would detect progressors with 86% sensitivity and 100% specificity. This will be evaluated further in larger studies.
    American Journal Of Pathology 10/2014; 184(10). DOI:10.1016/j.ajpath.2014.06.030 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A significant proportion (up to 62%) of Oral Squamous Cell Carcinomas (OSCCs) may arise from oral potential malignant lesions (OPML), such as leukoplakia. Patient outcomes may thus be improved through detection of lesions at risk for malignant transformation, by identifying and categorizing genetic changes in sequential, progressive OPMLs. We conducted array comparative genomic hybridization (aCGH) analysis of 25 sequential, progressive OPMLs and same-site OSCCs from five patients. Recurrent DNA copy number gains were identified on 1p in 20/25 cases (80%) with minimal, high-level amplification regions on 1p35 and 1p36. Other regions of gains were frequently observed: 11q13.4 (68%), 9q34.13 (64%), 21q22.3 (60%), 6p21 and 6q25 (56%), 10q24, 19q13.2, 22q12, 5q31.2, 7p13, 10q24, and 14q22 (48%). DNA losses were observed in >20% of samples and mainly detected on 5q31.2 (35%), 16p13.2 (30%), 9q33.1 and 9q33.29 (25%), and 17q11.2, 3p26.2, 18q21.1, 4q34.1 and 8p23.2 (20%). Such Copy Number Alterations (CNAs) were mapped in all grades of dysplasia that progressed, and their corresponding OSCCs, in 70% of patients, indicating that these CNAs may be associated with disease progression. Amplified genes mapping within recurrent CNAs (KHDRBS1, PARP1, RAB1A, HBEGF, PAIP2, BTBD7) were selected for validation, by quantitative real-time PCR, in an independent set of 32 progressive leukoplakia, 32 OSSCs and 21 non-progressive leukoplakia samples. Amplification of BTBD7, KHDRBS1, PARP1 and RAB1A was exclusively detected in progressive leukoplakia and corresponding OSCC. BTBD7, KHDRBS1, PARP1 and RAB1A may be associated with OSCC progression. Protein-protein interaction networks were created to identify possible pathways associated with OSCC progression.
    Human Molecular Genetics 01/2014; 23(10). DOI:10.1093/hmg/ddt657 · 6.68 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014