CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules

Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
Journal of Experimental Medicine (Impact Factor: 13.91). 10/2008; 205(10):2381-95. DOI: 10.1084/jem.20080072
Source: PubMed

ABSTRACT The CD45 phosphatase is uniquely expressed by all leukocytes, but its role in regulating hematopoietic progenitors is poorly understood. We show that enhanced CD45 expression on bone marrow (BM) leukocytes correlates with increased cell motility in response to stress signals. Moreover, immature CD45 knockout (KO) cells showed defective motility, including reduced homing (both steady state and in response to stromal-derived factor 1) and reduced granulocyte colony-stimulating factor mobilization. These defects were associated with increased cell adhesion mediated by reduced matrix metalloproteinase 9 secretion and imbalanced Src kinase activity. Poor mobilization of CD45KO progenitors by the receptor activator of nuclear factor kappaB ligand, and impaired modulation of the endosteal components osteopontin and stem cell factor, suggested defective osteoclast function. Indeed, CD45KO osteoclasts exhibited impaired bone remodeling and abnormal morphology, which we attributed to defective cell fusion and Src function. This led to irregular distribution of metaphyseal bone trabecules, a region enriched with stem cell niches. Consequently, CD45KO mice had less primitive cells in the BM and increased numbers of these cells in the spleen, yet with reduced homing and repopulation potential. Uncoupling environmental and intrinsic defects in chimeric mice, we demonstrated that CD45 regulates progenitor movement and retention by influencing both the hematopoietic and nonhematopoietic compartments.

Download full-text


Available from: Kfir Lapid, Jun 23, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic stem and progenitor cells (HSPCs) continuously egress out of the bone marrow (BM) to the circulation under homeostatic conditions. Their enhanced recruitment to the periphery in response to exogenous stimulation is a process, termed mobilization. HSPC mobilization is induced clinically or experimentally in animal models by a wide variety of agents, such as cytokines (e.g. G-CSF), chemotherapeutic agents (e.g. cyclophosphamide) and small molecules (e.g. the CXCR4 antagonist AMD3100). The major source for clinical transplantation protocols is via peripheral blood (PB) mobilization of BM derived HSPCs. Thus, deciphering mechanisms that regulate HSPC motility can be utilized for the development of improved mobilization regimens. The chemokine stromal derived factor-1 (SDF-1, also termed CXCL12) and its major receptor CXCR4 are crucial in mediating both retention and mobilization of HSPCs, and this chapter will emphasize its recently revealed roles in directing steady state egress and rapid mobilization. Loss of retention is mediated by disruption of adhesion interactions, such as those mediated by integrins and CD44, and intrinsic signaling pathways such as Rho GTPases dependent signaling. Pivotal roles for the hemostatic fibrinolytic and stress-induced proteolytic enzymatic machineries in regulating HSPC recruitment are also discussed. Nevertheless, breakdown of adhesion interactions and activity of proteases are only part of the story, as accumulating evidences present the BM microenvironment, not only as maintaining HSPC quiescence and proliferation, but also as controlling HSPC retention and motility. Differentiating myeloid cells, bone remodeling by osteoblasts and osteoclasts, stimuli of the innate immunity as well as of the nervous system, including signals emanating the circadian clock, highly regulate various aspects of HSPC function, including egress, recruitment and mobilization. This review aims at presenting up to-date results concerning the dynamic interplay between the BM microenvironment and the HSPCs, focusing on molecular mechanisms that lead eventually to mobilization of HSPCs from the BM into the circulation.
    StemBook, 12/2012; Harvard Stem Cell Institute.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoclasts (OCs) are specialized cells for the resorption of bone matrix that have also been recently reported to be involved in the mobilization of hematopoietic progenitor cells. When Ba/F3 cells expressing wild-type bcr-abl were co-cultured with osteoblasts (OBs), OCs, and bone slices, their proliferation was significantly suppressed, and the Ki-67 negative population, which is believed to be in G(0) phase, was increased. The results of our in vitro experiments suggest that OCs could be involved in the maintenance of dormant leukemic cells in the bone marrow (BM) microenvironment through the release of soluble factors, one of which could be TGF-beta.
    Leukemia Research 09/2009; 34(6):793-9. DOI:10.1016/j.leukres.2009.08.034 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nonreceptor isoform of tyrosine phosphatase epsilon (cyt-PTPe) supports osteoclast adhesion and activity in vivo, leading to increased bone mass in female mice lacking PTPe (EKO mice). The structure and organization of the podosomal adhesion structures of EKO osteoclasts are abnormal; the molecular mechanism behind this is unknown. We show here that EKO podosomes are disorganized, unusually stable, and reorganize poorly in response to physical contact. Phosphorylation and activities of Src, Pyk2, and Rac are decreased and Rho activity is increased in EKO osteoclasts, suggesting that integrin signaling is defective in these cells. Integrin activation regulates cyt-PTPe by inducing Src-dependent phosphorylation of cyt-PTPe at Y638. This phosphorylation event is crucial because wild-type-but not Y638F-cyt-PTPe binds and further activates Src and restores normal stability to podosomes in EKO osteoclasts. Increasing Src activity or inhibiting Rho or its downstream effector Rho kinase in EKO osteoclasts rescues their podosomal stability phenotype, indicating that cyt-PTPe affects podosome stability by functioning upstream of these molecules. We conclude that cyt-PTPe participates in a feedback loop that ensures proper Src activation downstream of integrins, thus linking integrin signaling with Src activation and accurate organization and stability of podosomes in osteoclasts.
    Molecular biology of the cell 09/2009; 20(20):4324-34. DOI:10.1091/mbc.E08-11-1158 · 5.98 Impact Factor