Article

Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan.

Department of Biology, University of Rochester, Rochester, NY 14627, USA.
Aging cell (Impact Factor: 5.94). 10/2008; 7(6):813-23. DOI: 10.1111/j.1474-9726.2008.00431.x
Source: PubMed

ABSTRACT Large, long-lived species experience more lifetime cell divisions and hence a greater risk of spontaneous tumor formation than smaller, short-lived species. Large, long-lived species are thus expected to evolve more elaborate tumor suppressor systems. In previous work, we showed that telomerase activity coevolves with body mass, but not lifespan, in rodents: telomerase activity is repressed in the somatic tissues of large rodent species but remains active in small ones. Without telomerase activity, the telomeres of replicating cells become progressively shorter until, at some critical length, cells stop dividing. Our findings therefore suggested that repression of telomerase activity mitigates the increased risk of cancer in larger-bodied species but not necessarily longer-lived ones. These findings imply that other tumor suppressor mechanisms must mitigate increased cancer risk in long-lived species. Here, we examined the proliferation of fibroblasts from 15 rodent species with diverse body sizes and lifespans. We show that, consistent with repressed telomerase activity, fibroblasts from large rodents undergo replicative senescence accompanied by telomere shortening and overexpression of p16(Ink4a) and p21(Cip1/Waf1) cycline-dependent kinase inhibitors. Interestingly, small rodents with different lifespans show a striking difference: cells from small shorter-lived species display continuous rapid proliferation, whereas cells from small long-lived species display continuous slow proliferation. We hypothesize that cells of small long-lived rodents, lacking replicative senescence, have evolved alternative tumor-suppressor mechanisms that prevent inappropriate cell division in vivo and slow cell growth in vitro. Thus, large-bodied species and small but long-lived species have evolved distinct tumor suppressor mechanisms.

Full-text

Available from: Andrei Seluanov, Jun 14, 2015
1 Follower
 · 
118 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ongoing West African Ebola epidemic highlights a recurring trend in the zoonotic emergence of virulent pathogens likely to come from bat reservoirs that has caused epidemiologists to ask 'Are bats special reservoirs for emerging zoonotic pathogens?' We collate evidence from the past decade to delineate mitochondrial mechanisms of bat physiology that have evolved to mitigate oxidative stress incurred during metabolically costly activities such as flight. We further describe how such mechanisms might have generated pleiotropic effects responsible for tumor mitigation and pathogen control in bat hosts. These synergisms may enable 'special' tolerance of intracellular pathogens in bat hosts; paradoxically, this may leave them more susceptible to immunopathological morbidity when attempting to clear extracellular infections such as 'white-nose syndrome' (WNS). Copyright © 2014 Elsevier Ltd. All rights reserved.
    Trends in Microbiology 01/2015; 23(3). DOI:10.1016/j.tim.2014.12.004 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In principle, a decline in base excision repair (BER) efficiency with age should lead to genomic instability and ultimately contribute to the onset of the aging phenotype. Although multiple studies have indicated a negative link between aging and BER, the change of BER efficiency with age in humans has not been systematically analyzed. Here, with foreskin fibroblasts isolated from 19 donors between 20 and 64 y of age, we report a significant decline of BER efficiency with age using a newly developed GFP reactivation assay. We further observed a very strong negative correlation between age and the expression levels of SIRT6, a factor which is known to maintain genomic integrity by improving DNA double strand break (DSB) repair. Our mechanistic study suggests that, similar to the regulatory role that SIRT6 plays in DNA DSB repair, SIRT6 regulates BER in a PARP1-depdendent manner. Moreover, overexpression of SIRT6 rescues the decline of BER in aged fibroblasts. In summary, our results uncovered the regulatory mechanisms of BER by SIRT6, suggesting that SIRT6 reactivation in aging tissues may help delay the process of aging through improving BER.
    Cell cycle (Georgetown, Tex.) 01/2015; 14(2):269-76. DOI:10.4161/15384101.2014.980641 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Species differ greatly in their rates of aging. Among mammalian species life span ranges from 2 to over 60 years. Here, we test the hypothesis that skin-derived fibroblasts from long-lived species of animals differ from those of short-lived animals in their defenses against protein damage. In parallel studies of rodents, nonhuman primates, birds, and species from the Laurasiatheria superorder (bats, carnivores, shrews, and ungulates), we find associations between species longevity and resistance of proteins to oxidative stress after exposure to H2O2 or paraquat. In addition, baseline levels of protein carbonyl appear to be higher in cells from shorter-lived mammals compared with longer-lived mammals. Thus, resistance to protein oxidation is associated with species maximal life span in independent clades of mammals, suggesting that this cellular property may be required for evolution of longevity. Evaluation of the properties of primary fibroblast cell lines can provide insights into the factors that regulate the pace of aging across species of mammals.
    The Journals of Gerontology Series A Biological Sciences and Medical Sciences 07/2014; DOI:10.1093/gerona/glu115 · 4.98 Impact Factor