Article

Ghrelin infusion in humans induces acute insulin resistance and lipolysis independent of growth hormone signaling.

Medical Department M (Endocrinology and Diabetes), Aarhus University Hospital, Aarhus, Denmark.
Diabetes (Impact Factor: 7.9). 10/2008; 57(12):3205-10. DOI: 10.2337/db08-0025
Source: PubMed

ABSTRACT Ghrelin is a gut-derived peptide and an endogenous ligand for the growth hormone (GH) secretagogue receptor. Exogenous ghrelin stimulates the release of GH (potently) and adrenocorticotropic hormone (ACTH) (moderately). Ghrelin is also orexigenic, but its impact on substrate metabolism is controversial. We aimed to study direct effects of ghrelin on substrate metabolism and insulin sensitivity in human subjects.
Six healthy men underwent ghrelin (5 pmol . kg(-1) . min(-1)) and saline infusions in a double-blind, cross-over study to study GH signaling proteins in muscle. To circumvent effects of endogenous GH and ACTH, we performed a similar study in eight hypopituitary adults but replaced with GH and hydrocortisone. The methods included a hyperinsulinemic-euglycemic clamp, muscle biopsies, microdialysis, and indirect calorimetry.
In healthy subjects, ghrelin-induced GH secretion translated into acute GH receptor signaling in muscle. In the absence of GH and cortisol secretion, ghrelin acutely decreased peripheral, but not hepatic, insulin sensitivity together with stimulation of lipolysis. These effects occurred without detectable suppression of AMP-activated protein kinase phosphorylation (an alleged second messenger for ghrelin) in skeletal muscle.
Ghrelin infusion acutely induces lipolysis and insulin resistance independently of GH and cortisol. We hypothesize that the metabolic effects of ghrelin provide a means to partition glucose to glucose-dependent tissues during conditions of energy shortage.

0 Bookmarks
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the effects of ghrelin on protein expression of the liver antioxidant enzymes superoxide dismutases (SODs), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), nuclear factor κB (NFκB) and inducible nitric oxide synthase (iNOS). Furthermore, we aimed to investigate whether extracellular regulated protein kinase (ERK1/2) and protein kinase B (Akt) are involved in ghrelin-regulated liver antioxidant enzymes and iNOS protein expression.
    Archives of Medical Science 08/2014; 10(4):806-816. · 1.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Controlling meal related glucose excursions continue to be a therapeutic challenge in diabetes mellitus. Mechanistic reasons for this need to be understood better to develop appropriate therapies. To investigate delayed gastric emptying effects on postprandial glucose turnover, insulin sensitivity and beta cell responsivity and function, as a feasibility study prior to studying patients with type 1 diabetes, we used the triple tracer technique, C-peptide and oral minimal model approach in healthy subjects. A single dose of 30 μg of pramlintide administered at the start of a mixed meal was used to delay gastric emptying rates. With delayed gastric emptying rates, peak rate of meal glucose appearance was delayed and rate of endogenous glucose production (EGP) was lower. C-peptide and oral minimal models enabled the assessments of beta cell function, insulin sensitivity and beta cell responsivity simultaneously. Delayed gastric emptying induced by pramlintide improved total insulin sensitivity and decreased total beta cell responsivity. However, beta cell function as measured by total disposition index did not change. The improved whole body insulin sensitivity coupled with lower rate of appearance of EGP with delayed gastric emptying provides experimental proof of the importance of evaluating pramlintide in artificial endocrine pancreas approaches to reduce postprandial blood glucose variability in patients with type 1 diabetes.
    American journal of physiology. Endocrinology and metabolism. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ghrelin is a 28 amino acid peptide mainly derived from the oxyntic gland of the stomach. Both acylated (AG) and unacylated (UAG) forms of ghrelin are found in the circulation. Initially, AG was considered as the only bioactive form of ghrelin. However, recent advances indicate that both AG and UAG exert distinct and common effects in organisms. Soon after its discovery, ghrelin was shown to promote appetite and adiposity in animal and human models. In response to these anabolic effects, an impressive number of elements have suggested the influence of ghrelin on the regulation of metabolic functions and the development of obesity-related disorders. However, due to the complexity of its biochemical nature and the physiological processes it governs, some of the effects of ghrelin are still debated in the literature. Evidence suggests that ghrelin influences glucose homeostasis through the modulation of insulin secretion and insulin receptor signaling. On the other hand, insulin was also shown to influence circulating levels of ghrelin. Here, we review the relationship between ghrelin and insulin and we describe the impact of this interaction on the modulation of glucose homeostasis.
    World journal of diabetes. 06/2014; 5(3):328-341.

Full-text (2 Sources)

Download
29 Downloads
Available from
May 28, 2014