The myth of the normal, average human brain-The ICBM experience: (1) Subject screening and eligibility

Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
NeuroImage (Impact Factor: 6.36). 09/2008; 44(3):914-22. DOI: 10.1016/j.neuroimage.2008.07.062
Source: PubMed

ABSTRACT In the course of developing an atlas and reference system for the normal human brain throughout the human age span from structural and functional brain imaging data, the International Consortium for Brain Mapping (ICBM) developed a set of "normal" criteria for subject inclusion and the associated exclusion criteria. The approach was to minimize inclusion of subjects with any medical disorders that could affect brain structure or function. In the past two years, a group of 1685 potential subjects responded to solicitation advertisements at one of the consortium sites (UCLA). Subjects were screened by a detailed telephone interview and then had an in-person history and physical examination. Of those who responded to the advertisement and considered themselves to be normal, only 31.6% (532 subjects) passed the telephone screening process. Of the 348 individuals who submitted to in-person history and physical examinations, only 51.7% passed these screening procedures. Thus, only 10.7% of those individuals who responded to the original advertisement qualified for imaging. The most frequent cause for exclusion in the second phase of subject screening was high blood pressure followed by abnormal signs on neurological examination. It is concluded that the majority of individuals who consider themselves normal by self-report are found not to be so by detailed historical interviews about underlying medical conditions and by thorough medical and neurological examinations. Recommendations are made with regard to the inclusion of subjects in brain imaging studies and the criteria used to select them.

7 Reads
  • Source
    • "Brain scans for the control sample were obtained from the ICBM database of normal adults (http://www.loni.ucla. edu/ICBM/Databases/), and criteria for subject screening and eligibility are detailed elsewhere [Mazziotta et al., 2009]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies linking meditation and brain structure are still relatively sparse, but the hippocampus is consistently implicated as one of the structures altered in meditation practitioners. To explore hippocampal features in the framework of meditation, we analyzed high-resolution structural magnetic resonance imaging data from 30 long-term meditators and 30 controls, closely matched for sex, age, and handedness. Hippocampal formations were manually traced following established protocols. In addition to calculating left and right hippocampal volumes (global measures), regional variations in surface morphology were determined by measuring radial distances from the hippocampal core to spatially matched surface points (local measures). Left and right hippocampal volumes were larger in meditators than in controls, significantly so for the left hippocampus. The presence and direction of this global effect was confirmed locally by mapping the exact spatial locations of the group differences. Altogether, radial distances were larger in meditators compared to controls, with up to 15% difference. These local effects were observed in several hippocampal regions in the left and right hemisphere though achieved significance primarily in the left hippocampal head. Larger hippocampal dimensions in long-term meditators may constitute part of the underlying neurological substrate for cognitive skills, mental capacities, and/or personal traits associated with the practice of meditation. Alternatively, given that meditation positively affects autonomic regulation and immune activity, altered hippocampal dimensions may be one result of meditation-induced stress reduction. However, given the cross-sectional design, the lack of individual stress measures, and the limited resolution of brain data, the exact underlying neuronal mechanisms remain to be established. Hum Brain Mapp, 2012. © 2012 Wiley Periodicals, Inc.
    Human Brain Mapping 12/2013; 34(12). DOI:10.1002/hbm.22153 · 5.97 Impact Factor
  • Source
    • "Subjects were recruited at the University of California, Los Angeles (UCLA), as part of the International Consortium for Brain Mapping (ICBM) project (Mazziotta et al., 2009). Subjects were extensively screened by medical and neurological examination to exclude any major medical, neurological, neurosurgical , or psychiatric conditions, high blood pressure, use of prescriptions, and over-the-counter or illicit drugs with the exception of occasional use for disease prevention [for details, see (Mazziotta et al., 2009)]. For this study, only individuals with high-quality DTI data collected from the same research site and of the same racial/ethnic group were included for examination . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Structural and diffusion imaging studies demonstrate effects of age, gender and asymmetry in many brain structures. However, few studies have addressed how individual differences might influence the structural integrity of the superficial white matter (SWM), comprised of short-range association (U-fibers), and intra-cortical axons. This study thus applied a sophisticated computational analysis approach to structural and diffusion imaging data obtained from healthy individuals selected from the International Consortium for Brain Mapping (ICBM) database across a wide adult age range (N=65, age: 18-74 years, all Caucasian). Fractional anisotropy (FA), radial (RD) and axial diffusivity (AD) were sampled and compared at thousands of spatially matched SWM locations and within regions-of-interest to examine global and local variations in SWM integrity across age, gender and hemisphere. Results showed age-related reductions in FA that were more pronounced in frontal SWM than in posterior and ventral brain regions while increases in RD and AD were observed across large areas of the SWM. FA was significantly greater in left temporo-parietal regions in males and in the posterior callosum in females. Prominent leftward FA and rightward AD and RD asymmetries were observed in temporal, parietal, and frontal regions. Results extend previous findings restricted to deep white matter pathways to demonstrate regional changes in SWM microstructure relating to processes of demyelination and/or to the number, coherence or integrity of axons with increasing age. SWM fiber organization/coherence appears greater in left hemisphere regions spanning language and other networks while more localized gender effects could possibly reflect sex-specific advantages in information strategies.
    Brain Connectivity 03/2013; 3(2). DOI:10.1089/brain.2012.0111
  • Source
    • "MTF transsexuals were evaluated to be free of psychosis according to a standardized diagnostic interview [9] and confirmed to be genetic males, as defined by the presence of the SRY gene in their genome [10]. All subjects of the control group also had to pass a physical and neurological screening examination performed by a neurologist [11]. While sexual orientation data were not available for the male controls, 6 transsexual participants reported being sexually attracted to men and 18 reported being sexually attracted to women. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The degree to which one identifies as male or female has a profound impact on one's life. Yet, there is a limited understanding of what contributes to this important characteristic termed gender identity. In order to reveal factors influencing gender identity, studies have focused on people who report strong feelings of being the opposite sex, such as male-to-female (MTF) transsexuals. To investigate potential neuroanatomical variations associated with transsexualism, we compared the regional thickness of the cerebral cortex between 24 MTF transsexuals who had not yet been treated with cross-sex hormones and 24 age-matched control males. Results revealed thicker cortices in MTF transsexuals, both within regions of the left hemisphere (i.e., frontal and orbito-frontal cortex, central sulcus, perisylvian regions, paracentral gyrus) and right hemisphere (i.e., pre-/post-central gyrus, parietal cortex, temporal cortex, precuneus, fusiform, lingual, and orbito-frontal gyrus). These findings provide further evidence that brain anatomy is associated with gender identity, where measures in MTF transsexuals appear to be shifted away from gender-congruent men.
    Journal of Behavioral and Brain Science 08/2012; 2(3):357-362. DOI:10.4236/jbbs.2012.23040
Show more


7 Reads
Available from