Article

Yohimbine impairs extinction of cocaine-conditioned place preference in an alpha2-adrenergic receptor independent process.

Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0615, USA.
Learning & memory (Cold Spring Harbor, N.Y.) (Impact Factor: 4.08). 02/2008; 15(9):667-76. DOI: 10.1101/lm.1079308
Source: PubMed

ABSTRACT Extinction, a form of learning that has the ability to reshape learned behavior based on new experiences, has been heavily studied utilizing fear learning paradigms. Mechanisms underlying extinction of positive-valence associations, such as drug self-administration and place preference, are poorly understood yet may have important relevance to addiction treatment. Data suggest a major role for the noradrenergic system in extinction of fear-based learning. Employing both pharmacological and genetic approaches, we investigated the role of the alpha(2)-adrenergic receptor (alpha(2)-AR) in extinction of cocaine-conditioned place preference (CPP) and glutamatergic transmission in the bed nucleus of the stria terminalis (BNST). We found that pre-extinction systemic treatment with the alpha(2)-AR antagonist yohimbine impaired cocaine CPP extinction in C57BL/6J mice, an effect that was not mimicked by the more selective alpha(2)-AR antagonist, atipamezole. Moreover, alpha(2A)-AR knockout mice exhibited similar cocaine CPP extinction and exacerbated extinction impairing effects of yohimbine. Using acute brain slices and electrophysiological approaches, we found that yohimbine produces a slowly evolving depression of glutamatergic transmission in the BNST that was not mimicked by atipamezole. Further, this action was extant in slices from alpha(2A)-AR knockout mice. Our data strongly suggest that extinction-modifying effects of yohimbine are unlikely to be due to actions at alpha(2A)-ARs.

0 Bookmarks
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathological fear and anxiety are highly debilitating and, despite considerable advances in psychotherapy and pharmacotherapy they remain insufficiently treated in many patients with PTSD, phobias, panic and other anxiety disorders. Increasing preclinical and clinical evidence indicates that pharmacological treatments including cognitive enhancers, when given as adjuncts to psychotherapeutic approaches [cognitive behavioral therapy including extinction-based exposure therapy] enhance treatment efficacy, while using anxiolytics such as benzodiazepines as adjuncts can undermine long-term treatment success. The purpose of this review is to outline the literature showing how pharmacological interventions targeting neurotransmitter systems including serotonin, dopamine, noradrenaline, histamine, glutamate, GABA, cannabinoids, neuropeptides (oxytocin, neuropeptides Y and S, opioids) and other targets (neurotrophins BDNF and FGF2, glucocorticoids, L-type-calcium channels, epigenetic modifications) as well as their downstream signaling pathways, can augment fear extinction and strengthen extinction memory persistently in preclinical models. Particularly promising approaches are discussed in regard to their effects on specific aspects of fear extinction namely, acquisition, consolidation and retrieval, including long-term protection from return of fear (relapse) phenomena like spontaneous recovery, reinstatement and renewal of fear. We also highlight the promising translational value of the preclinial research and the clinical potential of targeting certain neurochemical systems with, for example D-cycloserine, yohimbine, cortisol, and L-DOPA. The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery.
    Pharmacology [?] Therapeutics 12/2014; 122. DOI:10.1016/j.pharmthera.2014.12.004 · 7.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Psychostimulants, such as cocaine and amphetamines, act primarily through the monoamine neurotransmitters dopamine (DA), norepinephrine (NE), and serotonin (5-HT). While stimulant addiction research has largely focused on DA, medication development efforts targeting the dopaminergic system have thus far been unsuccessful, leading to alternative strategies aimed at abating stimulant abuse. Noradrenergic compounds have shown promise in altering the behavioral effects of stimulants in rodents, non-human primates, and humans. In this review, we discuss the contribution of each adrenergic receptor (AR) subtype (α1, α2, and β) to 5 stimulant-induced behaviors relevant to addiction: locomotor activity, conditioned place preference, anxiety, discrimination, and self-administration. AR manipulation has diverse effects on these behaviors; each subtype profoundly influences outcomes in some paradigms, but is inconsequential in others. The functional neuroanatomy and intracellular signaling mechanisms underlying the impact of AR activation/blockade on these behaviors remain largely unknown, presenting a new frontier for research on psychostimulant-AR interactions.
    Molecular pharmacology 02/2014; 85(4). DOI:10.1124/mol.113.090118 · 4.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The burden of anxiety disorders is growing but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioral therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)-amygdala circuit that subserves fear extinction, including value new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC-amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating of mPFC-amygdala circuitry. We describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, serotonin, γ-amino-butyric acid (GABA), glutamate, neuropeptides, endocannabinoids, and various other systems, that either directly target the mPFC-amygdala circuit or produce behavioral effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC-amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders.
    British Journal of Pharmacology 05/2014; 171(20). DOI:10.1111/bph.12779 · 5.07 Impact Factor

Full-text (2 Sources)

Download
19 Downloads
Available from
May 17, 2014