Article

Yohimbine impairs extinction of cocaine-conditioned place preference in an alpha2-adrenergic receptor independent process.

Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0615, USA.
Learning & memory (Cold Spring Harbor, N.Y.) (Impact Factor: 4.08). 02/2008; 15(9):667-76. DOI: 10.1101/lm.1079308
Source: PubMed

ABSTRACT Extinction, a form of learning that has the ability to reshape learned behavior based on new experiences, has been heavily studied utilizing fear learning paradigms. Mechanisms underlying extinction of positive-valence associations, such as drug self-administration and place preference, are poorly understood yet may have important relevance to addiction treatment. Data suggest a major role for the noradrenergic system in extinction of fear-based learning. Employing both pharmacological and genetic approaches, we investigated the role of the alpha(2)-adrenergic receptor (alpha(2)-AR) in extinction of cocaine-conditioned place preference (CPP) and glutamatergic transmission in the bed nucleus of the stria terminalis (BNST). We found that pre-extinction systemic treatment with the alpha(2)-AR antagonist yohimbine impaired cocaine CPP extinction in C57BL/6J mice, an effect that was not mimicked by the more selective alpha(2)-AR antagonist, atipamezole. Moreover, alpha(2A)-AR knockout mice exhibited similar cocaine CPP extinction and exacerbated extinction impairing effects of yohimbine. Using acute brain slices and electrophysiological approaches, we found that yohimbine produces a slowly evolving depression of glutamatergic transmission in the BNST that was not mimicked by atipamezole. Further, this action was extant in slices from alpha(2A)-AR knockout mice. Our data strongly suggest that extinction-modifying effects of yohimbine are unlikely to be due to actions at alpha(2A)-ARs.

0 Bookmarks
 · 
153 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cues associated with alcohol can stimulate subjective states that increase relapse. Alcohol-cue associations may be strengthened by enhancing adrenergic activity with yohimbine or weakened by blocking adrenergic activity with propranolol. Alcohol-cue associations may also be weakened by long cue exposure sessions or strengthened by short cue exposure sessions. A useful treatment approach for alcoholism may combine adrenergic manipulation with cue exposure sessions of a specific duration. The present study sought to determine if cue exposure during long- or short-duration extinction sessions with post-session yohimbine or propranolol would alter alcohol cue-induced responding and self-administration. Rats were trained to respond for alcohol during sessions that included an olfactory cue given at the beginning of the session and a visual/auditory cue complex delivered concurrently with alcohol. Cue-induced responding was assessed before and after the repeated extinction sessions. Repeated alcohol extinction sessions of long duration (45 min) or short duration (5 min) were followed immediately by injections of saline, yohimbine, or propranolol. After the second set of cue-induced responding tests, reacquisition of operant alcohol self-administration was examined. To determine if the experimental procedures were sensitive to memory manipulation through other pharmacological mechanisms, the NMDA receptor antagonist MK-801 was given 20 min prior to long-duration extinction sessions. Both the long- and short-duration extinction sessions decreased cue-induced responding. Neither yohimbine nor propranolol, given post-session, had subsequent effects on cue-induced responding or alcohol self-administration. MK-801 blocked the effect of extinction sessions on cue-induced responding but had no effect on self-administration. The present study shows that manipulation of the NMDA system in combination with alcohol cue exposure therapy during extinction-like sessions may be more effective than manipulation of the adrenergic system in reducing the strength of alcohol-cue associations in this specific model of alcohol relapse.
    Pharmacology Biochemistry and Behavior 01/2013; · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Psychostimulants, such as cocaine and amphetamines, act primarily through the monoamine neurotransmitters dopamine (DA), norepinephrine (NE), and serotonin (5-HT). While stimulant addiction research has largely focused on DA, medication development efforts targeting the dopaminergic system have thus far been unsuccessful, leading to alternative strategies aimed at abating stimulant abuse. Noradrenergic compounds have shown promise in altering the behavioral effects of stimulants in rodents, non-human primates, and humans. In this review, we discuss the contribution of each adrenergic receptor (AR) subtype (α1, α2, and β) to 5 stimulant-induced behaviors relevant to addiction: locomotor activity, conditioned place preference, anxiety, discrimination, and self-administration. AR manipulation has diverse effects on these behaviors; each subtype profoundly influences outcomes in some paradigms, but is inconsequential in others. The functional neuroanatomy and intracellular signaling mechanisms underlying the impact of AR activation/blockade on these behaviors remain largely unknown, presenting a new frontier for research on psychostimulant-AR interactions.
    Molecular pharmacology 02/2014; · 4.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The burden of anxiety disorders is growing but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioral therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)-amygdala circuit that subserves fear extinction, including value new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC-amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating of mPFC-amygdala circuitry. We describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, serotonin, γ-amino-butyric acid (GABA), glutamate, neuropeptides, endocannabinoids, and various other systems, that either directly target the mPFC-amygdala circuit or produce behavioral effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC-amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders.
    British Journal of Pharmacology 05/2014; · 5.07 Impact Factor

Full-text (2 Sources)

Download
17 Downloads
Available from
May 17, 2014