Reciprocal regulation of extracellular signal regulated kinase 1/2 and mitogen activated protein kinase phosphatase-3

Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Mayo Mail Code #807, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
Toxicology and Applied Pharmacology (Impact Factor: 3.71). 09/2008; 232(3):408-17. DOI: 10.1016/j.taap.2008.08.007
Source: PubMed


Mitogen activated protein kinase phosphatase-3 (MKP-3) is a putative tumor suppressor. When transiently overexpressed, MKP-3 dephosphorylates and inactivates extracellular signal regulated kinase (ERK) 1/2. Little is known about the roles of endogenous MKP-3, however. We previously showed that MKP-3 is upregulated in cell lines that express oncogenic Ras. Here we tested the roles of endogenous MKP-3 in modulating ERK1/2 under conditions of chronic stimulation of the Ras/Raf/MEK1/2/ERK1/2 pathway by expression of oncogenic Ras. We used two cell lines: H-ras MCF10A, breast epithelial cells engineered to express H-Ras, and DLD-1, colon cancer cells that express endogenous Ki-Ras. First, we found that MKP-3 acts in a negative feedback loop to suppress basal ERK1/2 when oncogenic Ras stimulates the Ras/Raf/MEK1/2/ERK1/2 cascade. ERK1/2 was required to maintain elevated MKP-3, indicative of a negative feedback loop. Accordingly, knockdown of MKP-3, via siRNA, increased ERK1/2 phosphorylation. Second, by using siRNA, we found that MKP-3 helps establish the sensitivity of ERK1/2 to extracellular activators by limiting the duration of ERK1/2 phosphorylation. Third, we found that the regulation of ERK1/2 by MKP-3 is countered by the complex regulation of MKP-3 by ERK1/2. Potent ERK1/2 activators stimulated the loss of MKP-3 within 30 min due to an ERK1/2-dependent decrease in MKP-3 protein stability. MKP-3 levels recovered within 120 min due to ERK1/2-dependent resynthesis. Preventing MKP-3 resynthesis, via siRNA, prolonged ERK1/2 phosphorylation. Altogether, these results suggest that under the pressure of oncogenic Ras expression, MKP-3 reins in ERK1/2 by serving in ERK1/2-dependent negative feedback pathways.

Download full-text


Available from: Laura J Mauro, Apr 18, 2015
6 Reads
  • Source
    • "Upon stimulation by growth factors, downstream targets such as cyclin D1 are activated by the ERK pathway, which is activated by LPA [30], resulting in progression from G1 to S. Cdks inhibitors such as p21 and p15 can block G1 progression. Dusp6 and Dusp10 acts as negative feedback regulators of ERK signalling [24,31]. Conversely, genes such as receptor tyrosine kinase KIT, its ligand stem cell factor (SCF) and KRAS, which induce ERK phosphorylation and promote cell proliferation [32], were upregulated by ascites. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Malignant ascites is often present at diagnostic in women with advanced ovarian cancer (OC) and its presence is associated with a worse outcome. Human peritoneal mesothelial cells (HPMCs) are key components of malignant ascites. Although the interplay between HPMCs and OC cells is believed to be critical for tumor progression, it has not been well characterized. The purpose of this study was to assess the effect of ascites on HPMCs and clarify the role of HPMCs in OC progression. Human OC ascites and benign peritoneal fluids were assessed for their ability to stimulate HPMC proliferation. Conditioned medium from ascites- and benign fluid-stimulated HPMCs were compared for their ability to attenuate apoptosis induced by TNF-related apoptosis-inducing ligand (TRAIL). We conducted a comparative analysis of global expression changes in ascites-stimulated HPMCs using Agilent oligonucleotide microarrays. As compared to benign peritoneal fluids, malignant ascites stimulated the proliferation of HPMCs. TRAIL-induced apoptosis was attenuated in OC cells exposed to conditioned medium from ascites-stimulated HPMCs as compared to OC cells exposed to conditioned medium from benign fluid-stimulated HPMCs. A total of 649 genes were differentially expressed in ascites-stimulated HPMCs. Based on a ratio of more than 1.5-fold and a P < 0.05, 484 genes were up-regulated and 165 genes were down-regulated in ascites-exposed HPMCs. Stimulation of HPMCs with OC ascites resulted in differential expression of genes mainly associated with the regulation of cell growth and proliferation, cell death, cell cycle and cell assembly and organization, compared to benign peritoneal fluids. Top networks up-regulated by OC ascites included Akt and NF-kappaB survival pathways whereas vascular endothelial growth factor (VEGF) pathway was down-regulated. The results of this study not only provide evidence supporting the importance of the interplay between cancer cells and HPMCs but also define the role that the tumor environment plays in these interactions.
    BMC Cancer 04/2014; 14(1):288. DOI:10.1186/1471-2407-14-288 · 3.36 Impact Factor
  • Source
    • "Phosphorylation is a fundamental mechanism by which cells regulate the function of various types of proteins. For example, phosphorylation can affect protein stability, enzyme activity, and the activity of transcription factors (Roux and Blenis, 2004; Zeliadt et al., 2008). MAP kinases phosphorylate and thus modulate the function of various types of proteins that are located in the membrane, the cytosol and the nucleus; phosphatases that remove the phosphate groups reverse the action of MAP kinases. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although known for its acutely toxic action, palytoxin has also been identified as a type of carcinogenic agent called a tumor promoter. In general tumor promoters do not damage DNA, but instead contribute to carcinogenesis by disrupting the regulation of cellular signaling. The identification of palytoxin as a tumor promoter, together with the recognition that the Na(+), K(+)-ATPase is its receptor, led to research on how palytoxin triggers the modulation of signal transduction pathways. This review focuses on mitogen activated protein (MAP) kinases as mediators of palytoxin-stimulated signaling. MAP kinases are a family of serine/threonine kinases that relay a variety of signals to the cellular machinery that regulates cell fate and function. The studies discussed in this review investigated how palytoxin stimulates MAP kinase activity and, in turn, how MAP kinases mediate the response of cells to palytoxin.
    Toxicon 11/2010; 57(3):440-8. DOI:10.1016/j.toxicon.2010.11.003 · 2.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells have the capacity to differentiate into various lineages, and the ability to reliably direct stem cell fate determination would have tremendous potential for basic research and clinical therapy. Nanotopography provides a useful tool for guiding differentiation, as the features are more durable than surface chemistry and can be modified in size and shape to suit the desired application. In this paper, nanotopography is examined as a means to guide differentiation, and its application is described in the context of different subsets of stem cells, with a particular focus on skeletal (mesenchymal) stem cells. To address the mechanistic basis underlying the topographical effects on stem cells, the likely contributions of indirect (biochemical signal-mediated) and direct (force-mediated) mechanotransduction are discussed. Data from proteomic research is also outlined in relation to topography-mediated fate determination, as this approach provides insight into the global molecular changes at the level of the functional effectors.
    Journal of Tissue Engineering 08/2010; 2010(1):120623. DOI:10.4061/2010/120623
Show more