Article

Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea

Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA.
The ISME Journal (Impact Factor: 9.27). 10/2008; 3(1):93-105. DOI: 10.1038/ismej.2008.83
Source: PubMed

ABSTRACT The northwestern Sargasso Sea undergoes annual cycles of productivity with increased production in spring corresponding to periods of upwelling, and oligotrophy in summer and autumn, when the water column becomes highly stratified. The biological productivity of this region is reduced during stratified periods as a result of low concentrations of phosphorus and nitrogen in the euphotic zone. To better understand the mechanisms of microbial survival in this oligotrophic environment, we used capillary liquid chromatography (LC)-tandem mass spectrometry to detect microbial proteins in surface samples collected in September 2005. A total of 2215 peptides that mapped to 236 SAR11 proteins, 1911 peptides that mapped to 402 Prochlorococcus proteins and 2407 peptides that mapped to 404 Synechococcus proteins were detected. Mass spectra from SAR11 periplasmic substrate-binding proteins accounted for a disproportionately large fraction of the peptides detected, consistent with observations that these extremely small cells devote a large proportion of their volume to periplasm. Abundances were highest for periplasmic substrate-binding proteins for phosphate, amino acids, phosphonate, sugars and spermidine. Proteins implicated in the prevention of oxidative damage and protein refolding were also abundant. Our findings support the view that competition for multiple nutrients in oligotrophic systems is extreme, but nutrient flux is sufficient to sustain microbial community activity.

0 Followers
 · 
165 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metaproteomic analyses were performed on suspended sediments collected in one coastal environment (Washington margin, Pacific Ocean, n = 5) and two oligotrophic environments (Atlantic Ocean near BATS, n = 5, and Pacific Ocean near HOTS, n = 5). Using a database of 2.3 million marine proteins developed using the NCBI database, 443 unique peptides were detected from which 363 unique proteins were identified. Samples from the euphotic zone contained on average 2-3x more identifiable proteins than deeper waters (150-1500 m) and these proteins were predominately from photosynthetic organisms. Diatom peptides dominate the spectra of the Washington margin while peptides from cyanobacteria, such as Synechococcus sp. dominated the spectra of both oligotrophic sites. Despite differences in the exact proteins identified at each location, there is good agreement for protein function and cellular location. Proteins in surface waters code for a variety of cellular functions including photosynthesis (24% of detected proteins), energy production (10%), membrane production (9%) and genetic coding and reading (9%), and are split 60-40 between membrane proteins and intracellular cytoplasmic proteins. Sargasso Sea surface waters contain a suite of peptides consistent with proteins involved in circadian rhythms that promote both C and N fixation at night. At depth in the Sargasso Sea, both muscle-derived myosin protein and the muscle-hydrolyzing proteases deseasin MCP-01 and metalloprotease Mcp02 from γ-proteobacteria were observed. Deeper waters contain peptides predominately sourced from γ-proteobacteria (37% of detected proteins) and α-proteobacteria (26%), although peptides from membrane and photosynthetic proteins attributable to phytoplankton were still observed (13%). Relative to surface values, detection frequencies for bacterial membrane proteins and extracellular enzymes rose from 9 to 16 and 2 to 4% respectively below the thermocline and the overall balance between membrane proteins and intracellular proteins grows to an approximate 75-25 split. Unlike the phytoplankton membrane proteins, which are detrital in nature, the bacterial protein suite at depth is consistent with living biomass.
    Journal of Marine Systems 02/2015; 143. DOI:10.1016/j.jmarsys.2014.10.014 · 2.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time<5 h). We propose a conceptual framework in which physical mixing of the water column periodically resets SAR11 communities to a high diversity state and the seasonal evolution of phosphate limitation competitively excludes deeper-dwelling ecotypes to promote low diversity states dominated (>80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q(2)=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study.
    The ISME Journal 09/2014; DOI:10.1038/ismej.2014.129 · 9.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marine primary productivity is strongly influenced by the scarcity of required nutrients, yet our understanding of these nutrient limitations is informed by experimental observations with sparse geographical coverage and methodological limitations. We developed a quantitative proteomic method to directly assess nutrient stress in high-light ecotypes of the abundant cyanobacterium Prochlorococcus across a meridional transect in the central Pacific Ocean. Multiple peptide biomarkers detected widespread and overlapping regions of nutritional stress for nitrogen and phosphorus in the North Pacific Subtropical Gyre and iron in the equatorial Pacific. Quantitative protein analyses demonstrated simultaneous stress for these nutrients at biome interfaces. This application of proteomic biomarkers to diagnose ocean metabolism demonstrated Prochlorococcus actively and simultaneously deploying multiple biochemical strategies for low-nutrient conditions in the oceans.
    Science 09/2014; 345(6201):1173-7. DOI:10.1126/science.1256450 · 31.48 Impact Factor

Full-text (2 Sources)

Download
88 Downloads
Available from
Jun 4, 2014