Article

Reactions of diborane with ammonia and ammonia borane: catalytic effects for multiple pathways for hydrogen release.

Department of Chemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, USA.
The Journal of Physical Chemistry A (Impact Factor: 2.77). 10/2008; 112(40):9946-54. DOI: 10.1021/jp804714r
Source: PubMed

ABSTRACT High-level electronic structure calculations have been used to construct portions of the potential energy surfaces related to the reaction of diborane with ammonia and ammonia borane (B2H6 + NH3 and B2H6 + BH3NH3)to probe the molecular mechanism of H2 release. Geometries of stationary points were optimized at the MP2/aug-cc-pVTZ level. Total energies were computed at the coupled-cluster CCSD(T) theory level with the correlation-consistent basis sets. The results show a wide range of reaction pathways for H2 elimination. The initial interaction of B2H6 + NH3 leads to a weak preassociation complex, from which a B-H-B bridge bond is broken giving rise to a more stable H3BHBH2NH3 adduct. This intermediate, which is also formed from BH3NH3 + BH3, is connected with at least six transition states for H2 release with energies 18-93 kal/mol above the separated reactants. The lowest-lying transition state is a six-member cycle, in which BH3exerts a bifunctional catalytic effect accelerating H2 generation within a B-H-H-N framework. Diborane also induces a catalytic effect for H2 elimination from BH3NH3 via a three-step pathway with cyclic transition states. Following conformational changes, the rate-determining transition state for H2 release is approximately 27 kcal/mol above the B2H6 + BH3NH3 reactants, as compared with an energy barrier of approximately 37 kcal/mol for H2 release from BH3NH3. The behavior of two separated BH3 molecules is more complex and involves multiple reaction pathways. Channels from diborane or borane initially converge to a complex comprising the H3BHBH2NH3adduct plus BH3. The interaction of free BH3 with the BH3 moiety of BH3NH3 via a six-member transition state with diborane type of bonding leads to a lower-energy transition state. The corresponding energy barrier is approximately 8 kcal/mol, relative to the reference point H3BHBH2NH3 adduct + BH3. These transition states are 27-36 kcal/mol above BH3NH3 + B2H6, but 1-9 kcal/mol below the separated reactants BH3NH3 + 2 BH3. Upon chemical activation of B2H6 by forming 2 BH3, there should be sufficient internal energy to undergo spontaneous H2 release. Proceeding in the opposite direction, the H2 regeneration of the products of the B2H6 + BH3NH3reaction should be a feasible process under mild thermal conditions.

0 Bookmarks
 · 
1,098 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reactivity of hydrazine in the presence of diborane has been investigated using ab initio quantum chemical computations (MP2 and CCSD(T) methods with the aug-cc-pVTZ basis set). Portions of the relevant potential energy surface were constructed to probe the formation mechanism of the hydrazine diborane (BH(3)BH(3)NH(2)NH(2)) and hydrazine bisborane (BH(3)NH(2)NH(2)BH(3)). The differences between both adducts are established. The release of hydrogen molecules from hydrazine bisborane adducts has also been characterized. Our results suggest that the BH(3)NH(2)NH(2)BH(3) adduct, which has been prepared experimentally, is formed from the starting reactants hydrazine + diborane. The observed adduct is produced by a transfer of a BH(3) group from BH(3)BH(3)NH(2)NH(2) rather than by the direct attachment of a separate BH(3) group, generated by predissociation of diborane, to BH(3)NH(2)NH(2).
    Physical Chemistry Chemical Physics 03/2011; 13(14):6649-56. · 4.20 Impact Factor

Full-text (2 Sources)

Download
79 Downloads
Available from
May 20, 2014