Oxidative stress and autophagy in the regulation of lysosome-dependent neuron death.

Department of Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Antioxidants & Redox Signaling (Impact Factor: 8.2). 10/2008; 11(3):481-96. DOI: 10.1089/ARS.2008.2263
Source: PubMed

ABSTRACT Lysosomes critically regulate the pH-dependent catabolism of extracellular and intracellular macromolecules delivered from the endocytic/heterophagy and autophagy pathways, respectively. The importance of lysosomes to cell survival is underscored not only by their unique ability effectively to degrade metalloproteins and oxidatively damaged macromolecules, but also by the distinct potential for induction of both caspase-dependent and -independent cell death with a compromise in the integrity of lysosome function. Oxidative stress and free radical damage play a principal role in cell death induced by lysosome dysfunction and may be linked to several upstream and downstream stimuli, including alterations in the autophagy degradation pathway, inhibition of lysosome enzyme function, and lysosome membrane damage. Neurons are sensitive to lysosome dysfunction, and the contribution of oxidative stress and free radical damage to lysosome dysfunction may contribute to the etiology of neurodegenerative disease. This review provides a broad overview of lysosome function and explores the contribution of oxidative stress and autophagy to lysosome dysfunction-induced neuron death. Putative signaling pathways that either induce lysosome dysfunction or result from lysosome dysfunction or both, and the role of oxidative stress, free radical damage, and lysosome dysfunction in pediatric lysosomal storage disorders (neuronal ceroid lipofuscinoses or NCL/Batten disease) and in Alzheimer's disease are emphasized.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main purposes of our study were to consider the effect of autophagy on auditory cells under oxidative stress, and the function of possible cross talk among p62, Keap1 and Nrf2 in autophagy-deficient auditory cells. First, we described how cell death was induced in auditory cell line (HEI-OC1) exposed to H2O2. We found that the decision for the cell death of auditory cells under oxidative stress depends on the balance between autophagy and necrosis due to ATP depletion, and autophagy plays a cytoprotective function in oxidative stress-induced necrosis. Our data clearly suggested that autophagy was a cell survival mechanism in H2O2-induced cell death, based on the observation that suppression of autophagy by knockdown of Atg7 sensitized, whereas activation of autophagy by rapamycin protected against H2O2-induced cell death. Next, our results regarding the relationship among p62, Nrf2 and Keap1 by siRNA paradoxically showed that p62 creates a positive feedback loop in the Keap1/Nrf2 pathway. Autophagy impaired by Atg7 knockdown degrades Keap1 in a p62-dependent manner, whereas Nrf2 is activated. As a result, the cell death induced by H2O2 was promoted in auditory cells. Taken together, these results suggested that the autophagy pathway maintained signaling cross talk with the Keap1-Nrf2 system through p62 in auditory cells under oxidative stress. Copyright © 2014. Published by Elsevier Inc.
    Cellular Signalling 11/2014; 27(2). DOI:10.1016/j.cellsig.2014.11.024 · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. Overview of Biomarkers for Diagnosis and Monitoring of Celiac Disease 2. Cystatin C: A Kidney Function Biomarker 3. Procalcitonin: Potential Role in Diagnosis and Management 4. Manganese Superoxide Dismutase and Oxidative Stress Modulation 5. Selenium and Selenium-Dependent Antioxidants in Chronic Kidney Disease 6. Lipidomics:New Insight Into Kidney Disease
    Advances in clinical chemistry 02/2015; 68. · 4.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is characterized by imbalanced reactive oxygen species (ROS) production and antioxidant defenses. Two main antioxidant systems exist. The nonenzymatic system relies on molecules to directly quench ROS and the enzymatic system is composed of specific enzymes that detoxify ROS. Among the latter, the superoxide dismutase (SOD) family is important in oxidative stress modulation. Of these, manganese-dependent SOD (MnSOD) plays a major role due to its mitochondrial location, i.e., the main site of superoxide (O2•−) production. As such, extensive research has focused on its capacity to modulate oxidative stress. Early data demonstrated the relevance of MnSOD as an O2•− scavenger. More recent research has, however, identified a prominent role for MnSOD in carcinogenesis. In addition, SOD downregulation appears associated with health risk in heart and brain. A single nucleotide polymorphism which alters the mitochondria signaling sequence for the cytosolic MnSOD form has been identified. Transport into the mitochondria was differentially affected by allelic presence and a new chapter in MnSOD research thus begun. As a result, an ever-increasing number of diseases appear associated with this allelic variation including metabolic and cardiovascular disease. Although diet and exercise upregulate MnSOD, the relationship between environmental and genetic factors remains unclear.
    Advances in clinical chemistry 01/2015; 68:87-130. · 4.30 Impact Factor

Full-text (2 Sources)

Available from
May 15, 2014