How confinement affects the dynamics of c60 in carbon nanopeapods.

Institut Laue Langevin, F-38042 Grenoble, France.
Physical Review Letters (Impact Factor: 7.73). 09/2008; 101(6):065507. DOI: 10.1103/PhysRevLett.101.065507
Source: PubMed

ABSTRACT The dynamics of confined systems is of major concern for both fundamental physics and applications. In this Letter, the dynamics of C60 fullerene molecules inside single walled carbon nanotubes is studied using inelastic neutron scattering. We identify the C60 vibrations and highlight their sensitivity to temperature. Moreover, a clear signature of rotational diffusion of the C60 is evidenced, which persists at lower temperature than in 3D bulk C60. It is discussed in terms of confinement and of reduced dimensionality of the C60 chain.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: A systematical study of the orientational behavior of C60 molecules in single wall carbon nanotubes (SWCNTs) with different chirality and diameter has been performed by using a model of an infinite long nanotube filled with two C60 (denoted as C60-1 and C60-2) molecules. We studied the preferred orientation of the C60-1 molecule when the neighboring C60-2 molecule was fixed at the pentagon, double-bond, and hexagon orientations respectively. Our results showed that the C60-1 molecule prefers the pentagon (hexagon) orientation when the tube diameter is smaller (larger) than 1.31 nm (1.36 nm). For the tube diameter in between, the preferred molecular orientation of C60-1 changes from pentagon to hexagon with the increasing tube diameter when the neighboring C60-2 molecule is fixed at the pentagon or double-bond orientation. A novel vertex orientation for the C60-1 molecule has been found when the C60-2 molecule is fixed at the hexagon orientation.
    Chinese Physics B 07/2013; 22(7):076101. · 1.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular semiconductors are increasingly used in devices, but understanding of elementary nanoscopic processes in molecular film growth is in its infancy. Here we use real-time in situ specular and diffuse X-ray scattering in combination with kinetic Monte Carlo simulations to study C60 nucleation and multilayer growth. We determine a self-consistent set of energy parameters describing both intra- and interlayer diffusion processes in C60 growth. This approach yields an effective Ehrlich-Schwoebel barrier of EES=110 meV, diffusion barrier of ED=540 meV and binding energy of EB=130 meV. Analysing the particle-resolved dynamics, we find that the lateral diffusion is similar to colloids, but characterized by an atom-like Schwoebel barrier. Our results contribute to a fundamental understanding of molecular growth processes in a system, which forms an important intermediate case between atoms and colloids.
    Nature Communications 11/2014; 5:5388. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This work is dedicated to the study of the structural and dynamical behavior of a model one-dimensional system over a wide temperature range : carbon nano-peapods. This compound is constituted of fullerenes (C60, in our case) inserted inside single-walled carbon nanotubes. The perfect match between the inner diameter of the tubes and the diameter of the fullerenes results in a chain organization of the C60 molecules. The synthesis of these peapods is described in the first part of this manuscript. The two next chapters are aimed to the description of the different experimental and simulation methods that are used to monitor the structural and dynamical behavior of the C60 molecules. In the three last chapters, we describe the behavior of the C60 molecules over three tempe- rature ranges, labeled high (500–1100 K), low (0–200 K), and intermediary (200–500 K) ranges. By comparing experimental results to analytical models for both monomer and polymer pea- pods (the rotational degree of freedom being hindered in the latter), we highlight three different behaviors of the molecules in these three ranges.
    11/2012, Degree: PhD, Supervisor: Stéphane Rols and Pascale Launois

Full-text (2 Sources)

Available from
May 20, 2014