Article

Altered gene expression and function of peripheral blood natural killer cells in children with autism.

Department of Medical Microbiology and Immunology, University of California at Davis, USA.
Brain Behavior and Immunity (Impact Factor: 6.13). 08/2008; 23(1):124-33. DOI: 10.1016/j.bbi.2008.08.001
Source: PubMed

ABSTRACT Immune related abnormalities have repeatedly been reported in autism spectrum disorders (ASD), including evidence of immune dysregulation and autoimmune phenomena. NK cells may play an important role in neurodevelopmental disorders such as ASD. Here we performed a gene expression screen and cellular functional analysis on peripheral blood obtained from 52 children with ASD and 27 typically developing control children enrolled in the case-control CHARGE study. RNA expression of NK cell receptors and effector molecules were significantly upregulated in ASD. Flow cytometric analysis of NK cells demonstrated increased production of perforin, granzyme B, and interferon gamma (IFNgamma) under resting conditions in children with ASD (p<0.01). Following NK cell stimulation in the presence of K562 target cells, the cytotoxicity of NK cells was significantly reduced in ASD compared with controls (p<0.02). Furthermore, under similar stimulation conditions the presence of perforin, granzyme B, and IFNgamma in NK cells from ASD children was significantly lower compared with controls (p<0.001). These findings suggest possible dysfunction of NK cells in children with ASD. Abnormalities in NK cells may represent a susceptibility factor in ASD and may predispose to the development of autoimmunity and/or adverse neuroimmune interactions during critical periods of development.

0 Followers
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism Spectrum Disorder (ASD) is a complex neurobehavioral syndrome with no known biomarker so far for early detection. It has been challenging, both to classify typical autism and associate a suitable biomarker with clinical phenotype spectrum. Brain-derived neurotrophic factor (BDNF) has emerged as a key neurotrophin regulating synaptic plasticity, neuronal differentiation and survival. Recently, BDNF depletion is reported in neurodegenerative as well as in psychiatric disorders, associated with severity of neurological dysfunction. Role of BDNF as a biomarker in ASD is gaining significance. Pre-clinical results have linked BDNF depletion in autism and mental retardation, however, with conflicting findings. In view of this, a preliminary study was carried out to measure serum BDNF levels in 48 children with ASD and mental retardation, and 29 age-matched controls. Serum BDNF levels were found significantly higher (p<0.001) in atypical autistic subjects (clinically milder phenotype) as compared to controls, but not in typical ASD cases (clinically severe phenotype). BDNF levels were significantly lower in females with typical/Rett Syndrome (p<0.05), but not in males with typical autism (p>0.1), as compared to controls. Lower BDNF levels indicate impairment in neuroprotective mechanism, while higher levels may imply a manifested protective response. Our study highlights the differential BDNF response based on the severity of neurobehavioral deficit, indicating a possible neuroprotective role of this molecule and supporting its exploration in targeted therapy in ASD.
    Annals of Neurosciences 10/2014; 21(4):129-133. DOI:10.5214/ans.0972.7531.210403
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Many aspects of autoimmune disease are not well understood, including the specificities of autoimmune targets, and patterns of co-morbidity and cross-heritability across diseases. Prior work has provided evidence that somatic mutation caused by gene conversion and deletion at segmentally duplicated loci is relevant to several diseases. Simple tandem repeat (STR) sequence is highly mutable, both somatically and in the germ-line, and somatic STR mutations are observed under inflammation. Results Protein-coding genes spanning STRs having markers of mutability, including germ-line variability, high total length, repeat count and/or repeat similarity, are evaluated in the context of autoimmunity. For the initiation of autoimmune disease, antigens whose autoantibodies are the first observed in a disease, termed primary autoantigens, are informative. Three primary autoantigens, thyroid peroxidase (TPO), phogrin (PTPRN2) and filaggrin (FLG), include STRs that are among the eleven longest STRs spanned by protein-coding genes. This association of primary autoantigens with long STR sequence is highly significant (). Long STRs occur within twenty genes that are associated with sixteen common autoimmune diseases and atherosclerosis. The repeat within the TTC34 gene is an outlier in terms of length and a link with systemic lupus erythematosus is proposed. Conclusions The results support the hypothesis that many autoimmune diseases are triggered by immune responses to proteins whose DNA sequence mutates somatically in a coherent, consistent fashion. Other autoimmune diseases may be caused by coherent somatic mutations in immune cells. The coherent somatic mutation hypothesis has the potential to be a comprehensive explanation for the initiation of many autoimmune diseases.
    PLoS ONE 07/2014; 9(7):e101093. DOI:10.1371/journal.pone.0101093 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Communication between maternal-fetal immune systems: development of immune tolerance.•Pathways by which immune dysfunction could contribute to neurodevelopmental disorders.•Effects of prenatal/perinatal stress and immune activity on CNS development/function.•Effects of prenatal/perinatal malnutrition on immune and CNS development/function.•Health benefits of physical activity during pregnancy for mother, fetus and infant.
    Brain Research 11/2014; DOI:10.1016/j.brainres.2014.10.051 · 2.83 Impact Factor

Full-text (2 Sources)

Download
43 Downloads
Available from
May 20, 2014