Article

Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga.

Department of Biochemistry, University of Shizuoka, School of Pharmaceutical Sciences, Global COE Program for Innovation in Human Health Sciences, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 09/2008; 376(1):91-5. DOI: 10.1016/j.bbrc.2008.08.100
Source: PubMed

ABSTRACT A sulfated polysaccharide, named fucoidan, from the marine alga Cladosiphon okamuranus is comprised of carbohydrate units containing glucuronic acid and sulfated fucose residues. Here we found this compound potently inhibits dengue virus type 2 (DEN2) infection. Viral infection was inhibited when DEN2, but not other serotypes, was pretreated with fucoidan. A carboxy-reduced fucoidan derivative in which glucuronic acid was converted to glucose did not inhibit viral infection. Elimination of the sulfated function group from fucoidan significantly attenuated the inhibitory activity on DEN2 infection with <1% fucoidan. DEN2 particles bound exclusively to fucoidan, indicating that fucoidan interacts directly with envelope glycoprotein (EGP) on DEN2. Structure-based analysis suggested that Arg323 of DEN2 EGP, which is conformationally proximal to one of the putative heparin binding residues, Lys310, is critical for the interaction with fucoidan. In conclusion, both the sulfated group and glucuronic acid of fucoidan account for the inhibition of DEN2 infection.

1 Bookmark
 · 
147 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sulfated galactans (SG) were isolated from the red seaweed Gracilaria fisheri (G. fisheri). Chemical analysis revealed SG contains sulfate (12.7%) and total carbohydrate (42.2 %) with an estimated molecular mass of 100 kDa. Structure analysis by NMR and FT-IR spectroscopy revealed that SG is a complex structure with a linear backbone of alternating 3-linked β-D-galactopyranose and 4-linked 3,6-anhydrogalactose units with partial 6-O-methylate-β-D-galactopyranose and with sulfation occuring on C4 of D-galactopyranose and C6 of L-galactopyranose units. SG treatment enhanced immune parameters including total haemocytes, phenoloxidase activity, superoxide anions and superoxide dismutase in shrimp Penaeus monodon. Shrimp fed with Artemia salina enriched with SG (100 and 200 μgml(-1)) and inoculated with white-spot syndrome virus (WSSV) showed a significantly lower mortality rate and lower viral VP 28 amplification and expression than control. The results suggest that SG from G. fisheri exhibits immune stimulatory and antiviral activities that could protect P. monodon from WSSV infection.
    Fish &amp Shellfish Immunology 10/2013; · 2.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of cholesterol in the virus envelope or in the cellular membranes for dengue virus (DENV) infection was examined by depletion with methyl-beta-cyclodextrin (MCD) or nystatin. Pretreatment of virions with MCD or nystatin significantly reduced virus infectivity in a dose-dependent manner. By contrast, pre-treatment of diverse human cell lines with MCD or nystatin did not affect DENV infection. The four DENV serotypes were similarly inactivated by cholesterol-extracting drugs and infectivity was partially rescued when virion suspensions were treated with MCD in the presence of bovine serum. The addition of serum or exogenous water-soluble cholesterol after MCD treatment did not produce a reversion of MCD inactivating effect. Furthermore,virion treatment with extra cholesterol exerted also a virucidal effect. Binding and uptake of cholesterol-deficient DENV into the host cell were not impaired, whereas the next step of fusion between virion envelope and endosome membrane leading to virion uncoating and release of nucleocapsids to the cytoplasm appeared to be prevented, as determined by the retention of capsid protein in cells infected with MCD inactivated-DENV virions. Thereafter, the infection was almost completely inhibited, given the failure of viral RNA synthesis and viral protein expression in cells infected with MCD-treated virions.These data suggest that envelope cholesterol is a critical factor in the fusion process for DENV entry.
    Virus Research 03/2013; · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to analyze the influence of virus origin, mammalian or mosquito cell-derived, on antiviral susceptibility of DENV-2 to entry inhibitors and the association of this effect with any alteration in the mode of entry into the cell. To this end, ten serial passages of DENV-2 were performed in mosquito C6/36 cells or monkey Vero cells and the antiviral susceptibility of each virus passage to sulfated polysaccharides (SP), like heparin and carrageenans, was evaluated by a virus plaque reduction assay. After serial passaging in Vero cells, DENV-2 became increasingly resistant to SP inhibition whereas the antiviral susceptibility was not altered in virus propagated in C6/36 cells. The change in antiviral susceptibility was associated to a differential mode of entry into the host cell. The route of endocytic entry for productive Vero cell infection was altered from a non-classical clathrin independent pathway for C6/36-grown virus to a clathrin-mediated endocytosis when the virus was serially propagated in Vero cells. Our results show the impact of the cellular system used for successive propagation of DENV on the initial interaction between the host cell and the virion in the next round of infection and the relevant consequences it might have during the in vitro evaluation of entry inhibitors.
    Virus Research 01/2014; · 2.75 Impact Factor