Article

IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine.

1] Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] I. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg 20246, Germany [3].
Nature (Impact Factor: 42.35). 10/2012; DOI: 10.1038/nature11535
Source: PubMed

ABSTRACT Chronic mucosal inflammation and tissue damage predisposes patients to the development of colorectal cancer. This association could be explained by the hypothesis that the same factors and pathways important for wound healing also promote tumorigenesis. A sensor of tissue damage should induce these factors to promote tissue repair and regulate their action to prevent development of cancer. Interleukin 22 (IL-22), a cytokine of the IL-10 superfamily, has an important role in colonic epithelial cell repair, and its levels are increased in the blood and intestine of inflammatory bowel disease patients. This cytokine can be neutralized by the soluble IL-22 receptor, known as the IL-22 binding protein (IL-22BP, also known as IL22RA2); however, the significance of endogenous IL-22BP in vivo and the pathways that regulate this receptor are unknown. Here we describe that IL-22BP has a crucial role in controlling tumorigenesis and epithelial cell proliferation in the colon. IL-22BP is highly expressed by dendritic cells in the colon in steady-state conditions. Sensing of intestinal tissue damage via the NLRP3 or NLRP6 inflammasomes led to an IL-18-dependent downregulation of IL-22BP, thereby increasing the ratio of IL-22/IL-22BP. IL-22, which is induced during intestinal tissue damage, exerted protective properties during the peak of damage, but promoted tumour development if uncontrolled during the recovery phase. Thus, the IL-22-IL-22BP axis critically regulates intestinal tissue repair and tumorigenesis in the colon.

0 Bookmarks
 · 
288 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: : Chronic inflammation predisposes patients with inflammatory bowel disease to the risk of developing colitis-associated cancer (CAC). Growing evidence strongly suggests that CAC development is multifactorial and is attributed to concurrent, dynamic dysregulations in host immunity, enteric microbiota, and epithelial restitution during the course of chronic inflammation. This article discusses the recent advances in understanding the different forms of CAC that may develop in patients with inflammatory bowel disease and animal models, as well as molecular alterations and other processes that orchestrate the development of CAC.
    Inflammatory Bowel Diseases 11/2014; 20(11):2115-23. · 5.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Programmed necrosis or necroptosis is an inflammatory form of cell death that critically requires the receptor-interacting protein kinase 3 (RIPK3). Here we showed that RIPK3 controls a separate, necrosis-independent pathway of inflammation by regulating cytokine expression in dendritic cells (DCs). Ripk3(-/-) bone-marrow-derived dendritic cells (BMDCs) were highly defective in lipopolysaccharide (LPS)-induced expression of inflammatory cytokines. These effects were caused by impaired NF-κB subunit RelB and p50 activation and by impaired caspase 1-mediated processing of interleukin-1β (IL-1β). This DC-specific function of RIPK3 was critical for injury-induced inflammation and tissue repair in response to dextran sodium sulfate (DSS). Ripk3(-/-) mice exhibited an impaired axis of injury-induced IL-1β, IL-23, and IL-22 cytokine cascade, which was partially corrected by adoptive transfer of wild-type DCs, but not Ripk3(-/-) DCs. These results reveal an unexpected function of RIPK3 in NF-κB activation, DC biology, innate inflammatory-cytokine expression, and injury-induced tissue repair.
    Immunity 10/2014; 41(4):567-78. · 19.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Innate lymphoid cells (ILCs) were first described as playing important roles in the development of lymphoid tissues and more recently in the initiation of inflammation at barrier surfaces in response to infection or tissue damage. It has now become apparent that ILCs play more complex roles throughout the duration of immune responses, participating in the transition from innate to adaptive immunity and contributing to chronic inflammation. The proximity of ILCs to epithelial surfaces and their constitutive strategic positioning in other tissues throughout the body ensures that, in spite of their rarity, ILCs are able to regulate immune homeostasis effectively. Dysregulation of ILC function might result in chronic pathologies such as allergies, autoimmunity, and inflammation. A new role for ILCs in the maintenance of metabolic homeostasis has started to emerge, underlining their importance in fundamental physiological processes beyond infection and immunity.
    Immunity 09/2014; 41(3):366-374. · 19.75 Impact Factor

Full-text

Download
141 Downloads
Available from
Jun 6, 2014