Article

Restoration of flagellar biosynthesis by varied mutational events in Campylobacter jejuni.

Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
Molecular Microbiology (Impact Factor: 5.03). 09/2008; 70(2):519-36. DOI: 10.1111/j.1365-2958.2008.06428.x
Source: PubMed

ABSTRACT Both a complex regulatory cascade involving the FlgSR two-component system and phase variation control expression of sigma(54)-dependent flagellar genes in Campylobacter jejuni. In this study, mutational mechanisms influencing production of the FlgS histidine kinase were discovered. Random non-motile, non-flagellated flgS variants were impaired for growth in the chick intestinal tract. Spontaneous revertants restored for flagellar biosynthesis, gene expression, and motility identified by in vivo and in vitro studies had undergone diverse intragenic and extragenic mutational events relative to flgS. Restorative intragenic events included true phase variation, second-site intragenic reversion, and insertion and deletion of short DNA segments within flgS. In vivo-isolated motile revertants possessed an identical, single extragenic mutation to create a partially constitutively active FlgR protein in the absence of FlgS. Considering that FlgR production is also influenced by phase variation, these new findings suggest that the FlgSR two-component system is unique in that each protein is controlled by phase variation and phosphorylation. In addition, this study highlights the mutational activities of C. jejuni and suggests that the bacterium may possess a repertoire of mutational mechanisms to overcome genetic lesions that impair production of virulence and colonization determinants while lacking a normal mismatch repair system.

0 Bookmarks
 · 
64 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapid adaptation to fluctuations in the host milieu contributes to the host persistence and virulence of bacterial pathogens. Adaptation is frequently mediated by hypermutable sequences in bacterial pathogens. Early bacterial genomic studies identified the multiplicity and virulence-associated functions of these hypermutable sequences. Thus, simple sequence repeat tracts (SSRs) and site-specific recombination were found to control capsular type, lipopolysaccharide structure, pilin diversity and the expression of outer membrane proteins. We review how the population diversity inherent in the SSR-mediated mechanism of localised hypermutation is being unlocked by the investigation of whole genome sequences of disease isolates, analysis of clinical samples and use of model systems. A contrast is presented between the problematical nature of analysing simple sequence repeats in next generation sequencing data and in simpler, pragmatic PCR-based approaches. Specific examples are presented of the potential relevance of this localized hypermutation to meningococcal pathogenesis. This leads us to speculate on the future prospects for unravelling how hypermutable mechanisms may contribute to the transmission, spread and persistence of bacterial pathogens.
    Pathogens. 02/2014; 3:164-184.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flagellar biogenesis in bacteria is a complex process in which the transcription of dozens of structural and regulatory genes is coordinated with the assembly of the flagellum. Although the overall process of flagellar biogenesis is conserved among bacteria, the mechanisms used to regulate flagellar gene expression vary greatly among different bacterial species. Many bacteria use the alternative sigma factor σ (54) (also known as RpoN) to transcribe specific sets of flagellar genes. These bacteria include members of the Epsilonproteobacteria (e.g., Helicobacter pylori and Campylobacter jejuni), Gammaproteobacteria (e.g., Vibrio and Pseudomonas species), and Alphaproteobacteria (e.g., Caulobacter crescentus). This review characterizes the flagellar transcriptional hierarchies in these bacteria and examines what is known about how flagellar gene regulation is linked with other processes including growth phase, quorum sensing, and host colonization.
    Scientifica. 01/2014; 2014:681754.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Campylobacter jejuni flagellum exports both proteins that form the flagellar organelle for swimming motility and colonization and virulence factors that promote commensal colonization of the avian intestinal tract or invasion of human intestinal cells, respectively. We explored how the C. jejuni flagellum is a versatile secretory organelle by examining molecular determinants that allow colonization and virulence factors to exploit the flagellum for their own secretion. Flagellar biogenesis was observed to exert temporal control of secretion of these proteins, indicating that a bolus of secretion of colonization and virulence factors occurs during hook biogenesis with filament polymerization itself reducing secretion of these factors. Furthermore, we found that intramolecular and intermolecular requirements for flagellar-dependent secretion of these proteins were most reminiscent to those for flagellin secretion. Importantly, we discovered that secretion of one colonization and virluence factor, CiaI, was not required for invasion of human colonic cells, which counters previous hypotheses for how this protein functions during invasion. Instead, secretion of CiaI was essential for C. jejuni to facilitate commensal colonization of the natural avian host. Our work provides insight into the versatility of the bacterial flagellum as a secretory machine that can export proteins promoting diverse biological processes.
    Molecular Microbiology 07/2014; · 5.03 Impact Factor

Full-text (2 Sources)

Download
3 Downloads
Available from
Aug 26, 2014