Article

Powerful Cocaine-Like Actions of 3,4-Methylenedioxypyrovalerone (MDPV), a Principal Constituent of Psychoactive ‘Bath Salts’ Products

Medicinal Chemistry Section of the Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology (Impact Factor: 7.83). 10/2012; 38(4). DOI: 10.1038/npp.2012.204
Source: PubMed

ABSTRACT The abuse of psychoactive 'bath salts' containing cathinones such as 3,4-methylenedioxypyrovalerone (MDPV) is a growing public health concern, yet little is known about their pharmacology. Here, we evaluated the effects of MDPV and related drugs using molecular, cellular, and whole-animal methods. In vitro transporter assays were performed in rat brain synaptosomes and in cells expressing human transporters, while clearance of endogenous dopamine was measured by fast-scan cyclic voltammetry in mouse striatal slices. Assessments of in vivo neurochemistry, locomotor activity, and cardiovascular parameters were carried out in rats. We found that MDPV blocks uptake of [(3)H]dopamine (IC(50)=4.1 nM) and [(3)H]norepinephrine (IC(50)=26 nM) with high potency but has weak effects on uptake of [(3)H]serotonin (IC(50)=3349 nM). In contrast to other psychoactive cathinones (eg, mephedrone), MDPV is not a transporter substrate. The clearance of endogenous dopamine is inhibited by MDPV and cocaine in a similar manner, but MDPV displays greater potency and efficacy. Consistent with in vitro findings, MDPV (0.1-0.3 mg/kg, intravenous) increases extracellular concentrations of dopamine in the nucleus accumbens. Additionally, MDPV (0.1-3.0 mg/kg, subcutaneous) is at least 10 times more potent than cocaine at producing locomotor activation, tachycardia, and hypertension in rats. Our data show that MDPV is a monoamine transporter blocker with increased potency and selectivity for catecholamines when compared with cocaine. The robust stimulation of dopamine transmission by MDPV predicts serious potential for abuse and may provide a mechanism to explain the adverse effects observed in humans taking high doses of 'bath salts' preparations.Neuropsychopharmacology advance online publication, 17 October 2012; doi:10.1038/npp.2012.204.

Download full-text

Full-text

Available from: Carl R Lupica, Jul 03, 2015
1 Follower
 · 
328 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pharmacology of novel psychoactive substances is mostly unknown. We evaluated the transporter and receptor interaction profiles of a series of para-(4)-substituted amphetamines and pyrovalerone cathinones. We tested the potency of these compounds to inhibit the norepinephrine (NE), dopamine (DA), and serotonin (5-HT) transporters (NET, DAT, and SERT, respectively) using human embryonic kidney 293 cells that express the respective human transporters. We also tested the substance-induced efflux of NE, DA, and 5-HT from monoamine-loaded cells, binding affinities to monoamine receptors, and 5-HT2B receptor activation. Para-(4)-substituted amphetamines, including 4-methylmethcathinone (mephedrone), 4-ethylmethcathinone, 4-fluoroamphetamine, 4-fluoromethamphetamine, 4-fluoromethcatinone (flephedrone), and 4-bromomethcathinone, were relatively more serotonergic (lower DAT:SERT ratio) compared with their analogs amphetamine, methamphetamine, and methcathinone. The 4-methyl, 4-ethyl, and 4-bromo groups resulted in enhanced serotonergic properties compared with the 4-fluoro group. The para-substituted amphetamines released NE and DA. 4-Fluoramphetamine, 4-flouromethamphetamine, 4-methylmethcathinone, and 4-ethylmethcathinone also released 5-HT similarly to 3,4-methylenedioxymethamphetamine. The pyrovalerone cathinones 3,4-methylenedioxypyrovalerone, pyrovalerone, α-pyrrolidinovalerophenone, 3,4-methylenedioxy-α-pyrrolidinopropiophenone, and 3,4-methylenedioxy-α-pyrrolidinobutiophenone potently inhibited the NET and DAT but not the SERT. Naphyrone was the only pyrovalerone that also inhibited the SERT. The pyrovalerone cathinones did not release monoamines. Most of the para-substituted amphetamines exhibited affinity for the 5-HT2A receptor but no relevant activation of the 5-HT2B receptor. All of the cathinones exhibited reduced trace amine-associated receptor 1 binding compared with the non-β-keto-amphetamines. In conclusion, para-substituted amphetamines exhibited enhanced direct and indirect serotonergic agonist properties and are likely associated with more MDMA-like effects. The pharmacological profile of the pyrovalerone cathinones predicts pronounced stimulant effects and high abuse liability.
    European Neuropsychopharmacology 01/2015; 25(3). DOI:10.1016/j.euroneuro.2014.12.012 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract "Bath salts" are synthetic stimulant "legal highs" that have recently been banned in the US. Epidemiological data regarding bath salts use are limited. In the present study, 113 individuals in the US reporting use of bath salts completed an anonymous, online survey characterizing demographic, experiential, and psychological variables. Respondents were more often male, 18-24 years old, and Caucasian/White with some college education. Past-year use was typically low (≤ 10 days), but marked by repeated dosing. Intranasal was the most frequently reported administration route and subjective effects were similar to other stimulants (e.g., cocaine, amphetamines). Bath salts use was associated with increased sexual desire and sexual HIV risk behavior, and met DSM-5 diagnostic criteria for disordered use in more than half of respondents. Bath salts use persists in the US despite federal bans of cathinone-like constituents. Self-reported stimulant-like effects of bath salts suggest their use as substitutes for traditional illicit stimulants. Data revealed more normative outcomes vis-à-vis extreme accounts by media and medical case reports. However, indications of product abuse potential and sexual risk remain, suggesting bath salts pose potential public health harm.
    Journal of psychoactive drugs 11/2014; 46(5):369-78. DOI:10.1080/02791072.2014.962717 · 1.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intracranial self-stimulation (ICSS) is a behavioral procedure in which operant responding is maintained by pulses of electrical brain stimulation. In research to study abuse-related drug effects, ICSS relies on electrode placements that target the medial forebrain bundle at the level of the lateral hypothalamus, and experimental sessions manipulate frequency or amplitude of stimulation to engender a wide range of baseline response rates or response probabilities. Under these conditions, drug-induced increases in low rates/probabilities of responding maintained by low frequencies/amplitudes of stimulation are interpreted as an abuse-related effect. Conversely, drug-induced decreases in high rates/probabilities of responding maintained by high frequencies/amplitudes of stimulation can be interpreted as an abuse-limiting effect. Overall abuse potential can be inferred from the relative expression of abuse-related and abuse-limiting effects. The sensitivity and selectivity of ICSS to detect abuse potential of many classes of abused drugs is similar to the sensitivity and selectivity of drug self-administration procedures. Moreover, similar to progressive-ratio drug self-administration procedures, ICSS data can be used to rank the relative abuse potential of different drugs. Strengths of ICSS in comparison with drug self-administration include 1) potential for simultaneous evaluation of both abuse-related and abuse-limiting effects, 2) flexibility for use with various routes of drug administration or drug vehicles, 3) utility for studies in drug-naive subjects as well as in subjects with controlled levels of prior drug exposure, and 4) utility for studies of drug time course. Taken together, these considerations suggest that ICSS can make significant contributions to the practice of abuse potential testing.
    Pharmacological reviews 07/2014; 66(3):869-917. DOI:10.1124/pr.112.007419 · 18.55 Impact Factor