Peritrophic membrane role in enhancing digestive efficiency. Theoretical and experimental models.

Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970, São Paulo, Brazil.
Journal of Insect Physiology (Impact Factor: 2.5). 09/2008; 54(10-11):1413-22. DOI: 10.1016/j.jinsphys.2008.08.002
Source: PubMed

ABSTRACT The peritrophic membrane (PM) is an anatomical structure surrounding the food bolus in most insects. Rejecting the idea that PM has evolved from coating mucus to play the same protective role as it, novel functions were proposed and experimentally tested. The theoretical principles underlying the digestive enzyme recycling mechanism were described and used to develop an algorithm to calculate enzyme distributions along the midgut and to infer secretory and absorptive sites. The activity of a Spodoptera frugiperda microvillar aminopeptidase decreases by 50% if placed in the presence of midgut contents. S. frugiperda trypsin preparations placed into dialysis bags in stirred and unstirred media have activities of 210 and 160%, respectively, over the activities of samples in a test tube. The ectoperitrophic fluid (EF) present in the midgut caeca of Rhynchosciara americana may be collected. If the enzymes restricted to this fluid are assayed in the presence of PM contents (PMC) their activities decrease by at least 58%. The lack of PM caused by calcofluor feeding impairs growth due to an increase in the metabolic cost associated with the conversion of food into body mass. This probably results from an increase in digestive enzyme excretion and useless homeostatic attempt to reestablish destroyed midgut gradients. The experimental models support the view that PM enhances digestive efficiency by: (a) prevention of non-specific binding of undigested material onto cell surface; (b) prevention of excretion by allowing enzyme recycling powered by an ectoperitrophic counterflux of fluid; (c) removal from inside PM of the oligomeric molecules that may inhibit the enzymes involved in initial digestion; (d) restriction of oligomer hydrolases to ectoperitrophic space (ECS) to avoid probable partial inhibition by non-dispersed undigested food. Finally, PM functions are discussed regarding insects feeding on any diet.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The midgut is a region of the digestive tract of bees with the lumen lined by a peritrophic membrane that is composed of chitin and proteins (peritrophins). The origin of the peritrophins in the midgut of adult bees is unknown. This study used an anti-peritrophin 55-kDa antibody to immunolocalize the sites of the peritrophic membrane synthesis in nine species of adult bees’ representatives of different families and sociability levels. In all studied species the peritrophin-55 is produced by digestive cells in the entire midgut in the rough endoplasmic reticulum following transference to Golgi apparatus and released by secretory vesicles, which fuses with the plasma membrane and microvilli. Thus, in the representatives of different groups of bees, the PM is of type I.
    Micron 10/2014; 68. DOI:10.1016/j.micron.2014.09.009 · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effect of dietary protein concentration on the spatial distribution of digestive proteinases in the shrimp Litopenaeus vannamei indicates the existence of endo-ectoperitrophic enzyme circulation in this species. Samples recovered from the midgut gland tissues, stomach contents, three different portions of the midgut and feces were used for quantitative and qualitative analysis of the composition and distribution of the digestive proteinases. Animals were divided into three different groups: (1) animals (controls) fed a commercial 35% protein diet, (2) animals fed a commercial diet supplemented with ovalbumin to a final protein concentration of 60%; (3) animals fed a 80% protein diet. Quantitative determinations using different substrates and zymograms showed that increasing protein concentration in the diet alters the distribution of proteinases along the digestive tract. Composition of proteinases in the midgut gland, stomach contents, midgut sections and feces were similar, but not identical. Chymotrypsin and trypsin paralogues were identified in all enzyme sources in a concentration gradient along the midgut in the control shrimp, the expected distribution supporting the existence of a recycling mechanism. The occurrence of a peritrophic membrane in other Decapoda suggests that endo-ectoperitrophic circulation of digestive enzymes and nutrients may also occur in other crustaceans and also extends beyond the Insecta.
    Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology 05/2014; DOI:10.1016/j.cbpb.2014.04.010 · 1.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The peritrophic matrix (PM) in the midgut of insects consists primarily of chitin and proteins and is thought to support digestion and provide protection from abrasive food particles and enteric pathogens. We examined the physiological roles of 11 putative peritrophic matrix protein (PMP) genes of the red flour beetle, Tribolium castaneum (TcPMPs). TcPMP genes are differentially expressed along the length of the midgut epithelium of feeding larvae. RNAi of individual PMP genes revealed no abnormal developmental phenotypes for 9 of the 11 TcPMPs. However, RNAi for two PMP genes, TcPMP3 and TcPMP5-B, resulted in depletion of the fat body, growth arrest, molting defects and mortality. In situ permeability assays after oral administration of different-sized FITC-dextran beads demonstrated that the exclusion size of the larval peritrophic matrix (PM) decreases progressively from >2 MDa to <4 kDa from the anterior to the most posterior regions of the midgut. In the median midguts of control larvae, 2 MDa dextrans were completely retained within the PM lumen, whereas after RNAi for TcPMP3 and TcPMP5-B, these dextrans penetrated the epithelium of the median midgut, indicating loss of structural integrity and barrier function of the larval PM. In contrast, RNAi for TcPMP5-B, but not RNAi for TcPMP3, resulted in breakdown of impermeability to 4 and 40 kDa dextrans in the PM of the posterior midgut. These results suggest that specific PMPs are involved in the regulation of PM permeability, and that a gradient of barrier function is essential for survival and fat body maintenance.
    Insect biochemistry and molecular biology 03/2014; DOI:10.1016/j.ibmb.2014.03.009 · 3.42 Impact Factor