Article

Expression of connexin genes in hippocampus of kainate-treated and kindled rats under conditions of experimental epilepsy

Abteilung für Molekulargenetik, Institut für Genetik, Universität Bonn, 53117 Bonn, Germany
Molecular Brain Research (Impact Factor: 2). 12/2000; 83:44-51. DOI: 10.1016/S0169-328X(00)00195-9
Source: PubMed

ABSTRACT We have analyzed whether the expression of connexin genes is altered in the hippocampus of kindled and kainate-treated rats, i.e., animal models of human temporal lobe epilepsy. We have tested this hypothesis by analyzing mRNA, protein abundance and cellular location of connexins (Cx) 43, 36, 32 and 30. The expression of glial fibrillary acid protein and mRNA was also monitored both in kainate-treated and kindled rats, in order to take into account reactive gliosis under these conditions. We found significantly increased expression of GFAP mRNA (100%) and protein (178%) in kainate-treated rats 4 weeks after kainate application, whereas in kindled rats only moderate increases of GFAP mRNA and protein were detected 2–3 weeks (group 2) or 4–6 weeks (group 1) after the last stage 5 induced seizure. Under gliotic conditions, connexins 43 and 30 mRNA or protein expression in astrocytes of kainate-treated rats were nearly unaffected. Cx36 mRNA expression (presumably in neurons) was significantly reduced (44%), whereas abundance of Cx36 protein was only slightly reduced. In both groups of kindled rats, Cx30 and Cx43 mRNA or protein expression were either slightly decreased or unchanged. Again, Cx36 mRNA and protein expression were reduced by about half in group 2. Immunofluorescence analysis of Cx43, Cx36 and Cx30 expression revealed that 4 weeks after the last kainate administration or kindling, cellular localization of these connexins was indistinguishable from control animals.

0 Bookmarks
 · 
49 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gap junctions are intercellular membrane channels that provide direct cytoplasmic continuity between adjacent cells. This communication can be affected by changes in expression of gap junctional subunits called Connexins (Cx). Changes in the expression and function of connexins are associated with number of brain neurodegenerative diseases. Neuroinflammation is a hallmark of various central nervous system (CNS) diseases, like multiple sclerosis, Alzheimer's disease and epilepsy. Neuroinflammation causes change in Connexins expression. Hippocampus, one of the main brain regions with a wide network of Gap junctions between different neural cell types, has particular vulnerability to damage and consequent inflammation. Cx32 - among Connexins- is expressed in hippocampal Olygodandrocytes and some neural subpopulations. Although multiple lines of evidence indicate that there is an association between neuroinflammation and the expression of connexin, the direct effect of neuroinflammation on the expression of connexins has not been well studied. In the present study, the effect of neuroinflammation induced by the Lipopolysaccharide (LPS) on Cx32 gene and protein expressions in rat hippocampus is evaluated.
    Autonomic neuroscience: basic & clinical 01/2013; 4(4):334-40. · 1.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gap junction (GJ) channels have been recognized as an important mechanism for synchronizing neuronal networks. Herein, we investigated the participation of GJ channels in the pilocarpine-induced status epilepticus (SE) by analyzing electrophysiological activity following the blockade of connexins (Cx)-mediated communication. In addition, we examined the regulation of gene expression, protein levels, phosphorylation profile and distribution of neuronal Cx36, Cx45 and glial Cx43 in the rat hippocampus during the acute and latent periods. Electrophysiological recordings revealed that the GJ blockade anticipates the occurrence of low voltage oscillations and promotes a marked reduction of power in all analyzed frequencies.Cx36 gene expression and protein levels remained stable in acute and latent periods, whereas upregulation of Cx45 gene expression and protein redistribution were detected in the latent period. We also observed upregulation of Cx43 mRNA levels followed by changes in the phosphorylation profile and protein accumulation. Taken together, our results indisputably revealed that GJ communication participates in the epileptiform activity induced by pilocarpine. Moreover, considering that specific Cxs undergo alterations through acute and latent periods, this study indicates that the control of GJ communication may represent a focus in reliable anti-epileptogenic strategies. Citation: Kinjo ER, Higa GSV, Morya E, Valle AC, Kihara AH, et al. (2014) Reciprocal Regulation of Epileptiform Neuronal Oscillations and Electrical Synapses in the Rat Hippocampus. PLoS ONE 9(10): e109149. doi:10.1371/journal.pone.0109149 Copyright: ß 2014 Kinjo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: The work was supported by the following funders: FAPESP and CNPq. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have read the journal's policy and have the following conflict: AHK is part of PLOS ONE Academic Board.
    PLoS ONE 10/2014; 9(10). · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enhanced gap junctional communication (GJC) between neurons is considered a major factor underlying the neuronal synchrony driving seizure activity. In addition, the hippocampal sharp wave ripple complexes, associated with learning and seizures, are diminished by GJC blocking agents. Although gap junctional blocking drugs inhibit experimental seizures, they all have other non-specific actions. Besides interneuronal GJC between dendrites, inter-axonal and inter-glial GJC is also considered important for seizure generation. Interestingly, in most studies of cerebral tissue from animal seizure models and from human patients with epilepsy, there is up-regulation of glial, but not neuronal gap junctional mRNA and protein. Significant changes in the expression and post-translational modification of the astrocytic connexin Cx43, and Panx1 were observed in an in vitro Co(++) seizure model, further supporting a role for glia in seizure-genesis, although the reasons for this remain unclear. Further suggesting an involvement of astrocytic GJC in epilepsy, is the fact that the expression of astrocytic Cx mRNAs (Cxs 30 and 43) is several fold higher than that of neuronal Cx mRNAs (Cxs 36 and 45), and the number of glial cells outnumber neuronal cells in mammalian hippocampal and cortical tissue. Pannexin expression is also increased in both animal and human epileptic tissues. Specific Cx43 mimetic peptides, Gap 27 and SLS, inhibit the docking of astrocytic connexin Cx43 proteins from forming intercellular gap junctions (GJs), diminishing spontaneous seizures. Besides GJs, Cx membrane hemichannels in glia and Panx membrane channels in neurons and glia are also inhibited by traditional gap junctional pharmacological blockers. Although there is no doubt that connexin-based GJs and hemichannels, and pannexin-based membrane channels are related to epilepsy, the specific details of how they are involved and how we can modulate their function for therapeutic purposes remain to be elucidated.
    Frontiers in Physiology 05/2014; 5:172.

Full-text (2 Sources)

Download
25 Downloads
Available from
Jun 1, 2014