Article

Macrophages Sequester Clofazimine in an Intracellular Liquid Crystal-Like Supramolecular Organization

Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan, United States of America.
PLoS ONE (Impact Factor: 3.53). 10/2012; 7(10):e47494. DOI: 10.1371/journal.pone.0047494
Source: PubMed

ABSTRACT Clofazimine is a poorly-soluble but orally-bioavailable small molecule drug that massively accumulates in macrophages when administered over prolonged periods of time. To determine whether crystal-like drug inclusions (CLDIs) that form in subcellular spaces correspond to pure clofazimine crystals, macrophages of clofazimine-fed mice were elicited with an intraperitoneal thioglycollate injection. Inside these cells, CLDIs appeared uniform in size and shape, but were sensitive to illumination. Once removed from cells, CLDIs were unstable. Unlike pure clofazimine crystals, isolated CLDIs placed in distilled water burst into small birefringent globules, which aggregated into larger clusters. Also unlike pure clofazimine crystals, CLDIs fragmented when heated, and disintegrated in alkaline media. In contrast to all other organelles, CLDIs were relatively resistant to sonication and trypsin digestion, which facilitated their biochemical isolation. The powder x-ray diffraction pattern obtained from isolated CLDIs was consistent with the diffraction pattern of liquid crystals and inconsistent with the expected molecular diffraction pattern of solid, three dimensional crystals. Observed with the transmission electron microscope (TEM), CLDIs were bounded by an atypical double-layered membrane, approximately 20 nanometers thick. CLDIs were polymorphic, but generally exhibited an internal multilayered organization, comprised of stacks of membranes 5 to 15 nanometers thick. Deep-etch, freeze-fracture electron microscopy of unfixed snap-frozen tissue samples confirmed this supramolecular organization. These results suggest that clofazimine accumulates in macrophages by forming a membrane-bound, multilayered, liquid crystal-like, semi-synthetic cytoplasmic structure.

1 Bookmark
 · 
90 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study aims at elucidating the intricate nature of the drug release and absorption following intramuscular (i.m.) injection of sustained-release prodrug nanocrystals/microcrystals. A paliperidone palmitate (PPP) long-acting suspension was characterized with regard to particle size (Dv,50 = 1.09 μm) and morphology prior to i.m. injection in rats. The local disposition was rigorously investigated by means of (immuno)histochemistry and transmission electron microscopy while the concurrent multiphasic pharmacokinetics was linked to the microanatomy. A transient (24 h) trauma-induced inflammation promptly evolved into a subclinical but chronic granulomatous inflammatory reaction initiated by the presence of solid material. The dense inflammatory envelope (CD68+ macrophages) led to particle agglomeration with subsequent drop in dissolution rate beyond 24 h postinjection. This was associated with a decrease in apparent paliperidone (PP) absorption (near-zero order) until 96 h and a delayed time of occurrence of observed maximum drug plasma concentration (168 h). The infiltrating macrophages phagocytosed large fractions of the depot, thereby influencing the (pro)drug release. Radial angiogenesis (CD31+) was observed throughout the inflammatory rim from 72 h onwards and presumably contributed to the sustained systemic PP concentrations by maintaining a sufficient absorptive capacity. No solid-state transitions of the retrieved formulation were recorded with X-ray diffraction analysis. In summary, the initial formulation-driven prodrug (PPP) dissolution and drug (PP) absorption were followed by a complex phase determined by the relative contribution of formulation factors and dynamic physiological variables. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci
    Journal of Pharmaceutical Sciences 05/2014; 103(7). DOI:10.1002/jps.24014 · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Uptake of dyes into living cells and organisms is of concern to several diverse groups of people. These include those not wishing dyes to enter cells (e.g. manufacturers and users of textile dyes, or laboratory workers using dyes as analytical reagents) and those requiring dye entry (e.g. biologists imaging cell contents, or clinicians using photoactive dyes as antitumour drugs). This diversity results in the need to consider an extremely wide range of dyes – and indeed of cells and organisms. An overview of methods for predicting uptake and intracellular localisation is provided, followed by a more detailed account of the concepts and procedures involved in decision-rule quantitative structure–activity relationship (QSAR) models. Some of these models permit the prediction of which dyes are likely to enter cells, and which dyes will be excluded. Other models predict where internalised dyes will localise within the live cells. Use of QSAR models to understand intracellular accumulation, redistribution, loss from the cell, and metabolic modification of dyes is also considered. In particular, the relationship of such predictions to toxicity is discussed. An extended case example is provided, describing the modelling of dye binding to nucleic acids in single-cell systems. A further case example then illustrates dye localisation in multicellular organisms. Finally, conclusions, critiques, and probable future directions concerning the QSAR modelling approach to dye uptake and localisation are given. A summary of key QSAR decision rules in the form of decision logic tabulations is provided.
    Coloration Technology 04/2014; 130(3). DOI:10.1111/cote.12093 · 1.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New drugs and drugs with a novel mechanism of action are desperately needed to shorten the duration of tuberculosis treatment, to prevent the emergence of drug resistance, and to treat multiple drug resistant strains of Mycobacterium tuberculosis. Recently, there has been renewed interest in clofazimine (CFZ). In this study, we utilized the C3HeB/FeJ mouse model possessing highly organized, hypoxic pulmonary granulomas with caseous necrosis to evaluate CFZ monotherapy in comparison to BALB/c mice which only form multifocal, coalescing cellular aggregates devoid of caseous necrosis. While CFZ treatment was highly effective in BALB/c mice, its activity was attenuated in the lungs of C3HeB/FeJ mice. This lack of efficacy was directly related to the pathological progression of disease in these mice, as administration of CFZ prior to the formation of hypoxic, necrotic granulomas reconstituted bactericidal activity in this mouse strain. These results support the continued use of mouse models of tuberculosis infection which exhibit a granulomatous response in the lungs that more closely resembles the pathology found in human disease.
    Antimicrobial Agents and Chemotherapy 05/2014; 58(7). DOI:10.1128/AAC.02565-14 · 4.57 Impact Factor

Full-text (3 Sources)

Download
58 Downloads
Available from
May 16, 2014