Article

Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease.

Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 10/2012; DOI: 10.1073/pnas.1207889109
Source: PubMed

ABSTRACT Gaucher disease (GD) is an autosomal recessive disorder caused by mutations in the acid β-glucocerebrosidase gene. To model GD, we generated human induced pluripotent stem cells (hiPSC), by reprogramming skin fibroblasts from patients with type 1 (N370S/N370S), type 2 (L444P/RecNciI), and type 3 (L444P/L444P) GD. Pluripotency was demonstrated by the ability of GD hiPSC to differentiate to all three germ layers and to form teratomas in vivo. GD hiPSC differentiated efficiently to the cell types most affected in GD, i.e., macrophages and neuronal cells. GD hiPSC-macrophages expressed macrophage-specific markers, were phagocytic, and were capable of releasing inflammatory mediators in response to LPS. Moreover, GD hiPSC-macrophages recapitulated the phenotypic hallmarks of the disease. They exhibited low glucocerebrosidase (GC) enzymatic activity and accumulated sphingolipids, and their lysosomal functions were severely compromised. GD hiPSC-macrophages had a defect in their ability to clear phagocytosed RBC, a phenotype of tissue-infiltrating GD macrophages. The kinetics of RBC clearance by types 1, 2, and 3 GD hiPSC-macrophages correlated with the severity of the mutations. Incubation with recombinant GC completely reversed the delay in RBC clearance from all three types of GD hiPSC-macrophages, indicating that their functional defects were indeed caused by GC deficiency. However, treatment of induced macrophages with the chaperone isofagomine restored phagocytosed RBC clearance only partially, regardless of genotype. These findings are consistent with the known clinical efficacies of recombinant GC and isofagomine. We conclude that cell types derived from GD hiPSC can effectively recapitulate pathologic hallmarks of the disease.

0 Followers
 · 
221 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: More than 500 rare genetic bone disorders have been described, but for many of them only limited treatment options are available. Challenges for studying these bone diseases come from a lack of suitable animal models and unavailability of skeletal tissues for studies. Effectors for skeletal abnormalities of bone disorders may be abnormal bone formation directed by osteoblasts or anomalous bone resorption by osteoclasts, or both. Patient-specific induced pluripotent stem cells (iPSCs) can be generated from somatic cells of various tissue sources and in theory can be differentiated into any desired cell type. However, successful differentiation of hiPSCs into functional bone cells is still a challenge. Our group focuses on the use of human iPSCs (hiPSCs) to identify osteoclast defects in craniometaphyseal dysplasia. In this review, we describe the impact of stem cell technology on research for better treatment of such disorders, the generation of hiPSCs from patients with rare genetic bone disorders and current protocols for differentiating hiPSCs into osteoclasts.
    Remote Sensing 12/2014; 3(4):1490-1510. DOI:10.3390/jcm3041490 · 2.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Gaucher disease (GD) is an inherited metabolic disorder caused by mutations in the glucocerebrosidase (GBA1) gene. Although infusions of recombinant GBA ameliorate the systemic effects of GD, this therapy has no effect on the neurological manifestations. Patients with the neuronopathic forms of GD (nGD) are often severely disabled and die prematurely. The search for innovative drugs is thus urgent for the neuronopathic forms.Areas covered: Here we briefly summarize the available treatments for GD. We then review recent studies of the molecular pathogenesis of GD, which suggest new avenues for therapeutic development.Expert opinion: Existing treatments for GD are designed to target the primary consequence of the inborn defects of sphingolipid metabolism, that is, lysosomal accumulation of glucosylceramide (GlcCer). Here we suggest that targeting other pathways, such as those that are activated as a consequence of GlcCer accumulation, may also have salutary clinical effects irrespective of whether excess substrate persists. These pathways include those implicated in neuroinflammation, and specifically, receptor-interacting protein kinase-3 (RIP3) and related components of this pathway, which appear to play a vital role in the pathogenesis of nGD. Once available, inhibitors to components of the RIP kinase pathway will hopefully offer new therapeutic opportunities in GD.
    Expert Opinion on Therapeutic Targets 11/2014; 19(3). DOI:10.1517/14728222.2014.981530 · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since 2006, several laboratories have proved that somatic cells can be reprogramed into induced pluripotent stem cells (iPSCs). iPSCs have enormous potential in stem cell biology as they can give rise to numerous cell lineages, including the three germ layers. In this review, we discuss past and recent advances in human iPSCs used for modeling diseases in vitro, screening drugs to test new treatments, and autologous cell and tissue regenerative therapies, with a special focus on reproductive medicine applications. While this latter field of research is still in its infancy, it holds great promise for investigating germ cell development and studying the genetic and physiopathological mechanisms of infertility. A major cause of infertility is the absence of germ cells in the testes, mainly due to genetic background or as a consequence of gonadotoxic treatments. For these patients, no effective fertility restoration strategy has so far been identified. The derivation of germ cells from iPSCs represents an alternative source of stem cells able to differentiate into spermatozoa. Lessons learned from animal models as well as studies on human iPSCs for reproductive purposes are reviewed.
    03/2014; 1:5. DOI:10.3389/fsurg.2014.00005

Full-text

Download
61 Downloads
Available from
Jun 3, 2014