Caspase control: protagonists of cancer cell apoptosis.

Department of Molecular and Cellular Biochemistry and the Markey Cancer Center, University of Kentucky College of Medicine, Department of Urology, Lexington, KY 40536, USA.
Experimental oncology 10/2012; 34(3):165-75.
Source: PubMed

ABSTRACT Emergence of castration-resistant metastatic prostate cancer is due to activation of survival pathways, including apoptosis suppression and anoikis resistance, and increased neovascularization. Thus targeting of apoptotic players is of critical significance in prostate cancer therapy since loss of apoptosis and resistance to anoikis are critical in aberrant malignant growth, metastasis and conferring therapeutic failure. The majority of therapeutic agents act through intrinsic mitochondrial, extrinsic death receptor pathways or endoplasmic reticulum stress pathways to induce apoptosis. Current therapeutic strategies target restoring regulatory molecules that govern the pro-survival pathways such as PTEN which regulates AKT activity. Other strategies focus on reactivating the apoptotic pathways either by down-regulating anti-apoptotic players such as BCL-2 or by up-regulating pro-apoptotic protein families, most notably, the caspases. Caspases are a family of cystine proteases which serve critical roles in apoptotic and inflammatory signaling pathways. During tumorigenesis, significant loss or inactivation of lead members in the caspase family leads to impairing apoptosis induction, causing a dramatic imbalance in the growth dynamics, ultimately resulting in aberrant growth of human cancers. Recent exploitation of apoptosis pathways towards re-instating apoptosis induction via caspase re-activation has provided new molecular platforms for the development of therapeutic strategies effective against advanced prostate cancer as well as other solid tumors. This review will discuss the current cellular landscape featuring the caspase family in tumor cells and their activation via pharmacologic intervention towards optimized anti-cancer therapeutic modalities. This article is part of a Special Issue entitled "Apoptosis: Four Decades Later".

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imatinib mesylate is a chemotherapeutic drug that inhibits the tyrosine kinase activity of c-KIT and has been successfully used to treat leukemias and some solid tumors. However, its application for treatment of hormone-refractory prostate cancer (HRPC) has shown modest effectiveness and did not follow the outcomes in cultured cells or animal models. Moreover, the molecular pathways by which imatinib induces cytotoxicity in prostate cancer cells are poorly characterized. Two cell line models of HRPC (DU145 and PC3) were exposed to 20 μM of imatinib for 6-72 hr. MTS assay was used to assess cell viability during the course of experiment. Gene expression analysis of c-KIT, cell-cycle and apoptosis regulators, and angiogenic factors was determined by means of real-time PCR, western blot, and/or immunocytochemistry. The enzymatic activity of the apoptosis effector, caspase-3, was determined by a colorimetric assay. Imatinib significantly decreased the viability of DU145 cells but paradoxically augmented the viability of PC3 cells. DU145 cells displayed diminished expression of anti-apoptotic Bcl-2 protein and augmented levels of caspase-8 and -9, as well as, increased enzymatic activity of caspase-3 in response to imatinib. No differences existed on the expression levels of apoptosis-related proteins in PC3 cells treated with imatinib, though the activity of caspase-3 was decreased. The mRNA levels of angiogenic factor VEGF were decreased in DU145-treated cells, whereas an opposite effect was seen in PC3. In addition, it was shown that DU145 and PC3 cells present a differential expression of c-KIT protein variants. DU145 and PC3 cells displayed a contradictory behavior in response to imatinib, which was underpinned by a distinct expression pattern (or activity) of target regulators of cell-cycle, apoptosis, and angiogenesis. The paradoxical effect of imatinib in PC3 cells may be related with the differential expression of c-KIT protein variants. Moreover, the present findings helped to understand the discrepancies in the efficacy of imatinib as therapeutic option in HRPC. Prostate 9999: 1-13, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    The Prostate 03/2015; DOI:10.1002/pros.22976 · 3.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is considered to be the most common malignancy in women. Treatment of breast cancer has been focused on molecular targeted therapy, and anticancer peptides are considered to be some of the most promising candidate drugs. In the current study, we used mRNA-peptide display technology to screen antibreast cancer peptides and identified a novel peptide, SA12, which showed significant activity in the inhibition of proliferation and induction of apoptosis in SKBr-3 breast cancer cells. The mechanism by which SA12 peptide triggers apoptosis was further investigated using a pull-down assay, reverse transcription-polymerase chain reaction, and Western blotting analysis. The results demonstrated that this peptide could interact with tumor-associated proteins MECP2 and CDC20B, which further induced apoptosis of tumor cells via the mitochondrial pathway involving the Bcl-2 family and related caspases. We propose that the novel SA12 peptide has the potential to provide a new strategy for the development of targeted therapy in breast cancer.
    Drug Design, Development and Therapy 03/2015; 9:1319-1330. DOI:10.2147/DDDT.S75780 · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that IL-2 deprivation induced acid sphingomyelinase-mediated (ASM-mediated) ceramide elevation and apoptosis in an NK/T lymphoma cell line KHYG-1. However, the molecular mechanism of ASM-ceramide-mediated apoptosis during IL-2 deprivation is poorly understood. Here, we showed that IL-2 deprivation induces caspase-dependent apoptosis characterized by phosphatidylserine externalization, caspase-8, -9, and -3 cleavage, and degradation of X-linked inhibitor of apoptosis protein (XIAP). IL-2 re-supplementation rescued apoptosis via inhibition of XIAP degradation without affecting caspase cleavage. However, IL-2 deprivation induced ceramide elevation via ASM in lysosomes and activated lysosomal cathepsin B (CTSB) but not cathepsin D. A CTSB inhibitor CA-074 Me and knockdown of CTSB inhibited ceramide-mediated XIAP degradation and apoptosis. Inhibition of ceramide accumulation in lysosomes using an ASM inhibitor, desipramine, decreased cytosolic activation of CTSB by inhibiting its transfer into cytosol from the lysosome. Knockdown of ASM also inhibited XIAP degradation and apoptosis. Furthermore, cell permeable N-acetyl sphingosine (C2-ceramide), which increases mainly endogenous d18:1/16:0 and d18:1/24:1 ceramide-like IL-2 deprivation, induced caspase-dependent apoptosis with XIAP degradation through CTSB. These findings suggest that lysosomal ceramide produced by ASM mediates XIAP degradation by activation of cytosolic CTSB and caspase-dependent apoptosis. The ASM-ceramide-CTSB signaling axis is a novel pathway of ceramide-mediated apoptosis in IL-2-deprived NK/T lymphoma cells.
    Cell Death & Disease 04/2015; 6(4):e1717. DOI:10.1038/cddis.2015.82 · 5.18 Impact Factor