Caspase control: Protagonists of cancer cell apoptosis

Department of Molecular and Cellular Biochemistry and the Markey Cancer Center, University of Kentucky College of Medicine, Department of Urology, Lexington, KY 40536, USA.
Experimental oncology 10/2012; 34(3):165-75.
Source: PubMed


Emergence of castration-resistant metastatic prostate cancer is due to activation of survival pathways, including apoptosis suppression and anoikis resistance, and increased neovascularization. Thus targeting of apoptotic players is of critical significance in prostate cancer therapy since loss of apoptosis and resistance to anoikis are critical in aberrant malignant growth, metastasis and conferring therapeutic failure. The majority of therapeutic agents act through intrinsic mitochondrial, extrinsic death receptor pathways or endoplasmic reticulum stress pathways to induce apoptosis. Current therapeutic strategies target restoring regulatory molecules that govern the pro-survival pathways such as PTEN which regulates AKT activity. Other strategies focus on reactivating the apoptotic pathways either by down-regulating anti-apoptotic players such as BCL-2 or by up-regulating pro-apoptotic protein families, most notably, the caspases. Caspases are a family of cystine proteases which serve critical roles in apoptotic and inflammatory signaling pathways. During tumorigenesis, significant loss or inactivation of lead members in the caspase family leads to impairing apoptosis induction, causing a dramatic imbalance in the growth dynamics, ultimately resulting in aberrant growth of human cancers. Recent exploitation of apoptosis pathways towards re-instating apoptosis induction via caspase re-activation has provided new molecular platforms for the development of therapeutic strategies effective against advanced prostate cancer as well as other solid tumors. This review will discuss the current cellular landscape featuring the caspase family in tumor cells and their activation via pharmacologic intervention towards optimized anti-cancer therapeutic modalities. This article is part of a Special Issue entitled "Apoptosis: Four Decades Later".

16 Reads
  • Source
    • "The key DISC components are the initiator procaspases 8 and 10, which become activated though trans-and self-cleavage events. These initiator caspases cleave downstream effector caspases 3, 6 and 7 (Fiandalo and Kyprianou, 2012). "

  • Source
    • "The extrinsic and intrinsic pathways converge at the phase of apoptosis execution, which is mediated mainly by effector caspases -3, -6 and -7 [14], [15]. The cleavage of specific cellular substrates results in biochemical and morphological changes, such as: cell shrinkage, membrane blebbing, phosphatidylserine exposure, chromatin condensation and nuclear fragmentation [16], [17]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite advances in oncology research, cancer is one of the leading causes of death worldwide. Thus, there is a demand for the development of more selective and effective antitumor agents. This study showed that A398, a novel podophyllotoxin analogue, was cytotoxic to the HT-29, MCF-7, MOLT-4 and HL-60 tumor cell lines, being less active in human peripheral blood mononuclear cells and normal cell lines FGH and IEC-6. Tests using the HepG2 lineage indicated that its metabolites do not contribute to its cytotoxicity. In the HL-60 cells, A398 induced apoptosis in a time and concentration-dependent manner, promoting mitochondrial depolarization, inhibition of Bcl-2, phosphatidylserine exposure, activation of caspases -8, -9 and -3, and DNA fragmentation. The production of reactive oxygen species does not seem to be a crucial event for the apoptotic process. Pretreatment with specific inhibitors of kinases ERK1/2, JNK and p38 resulted in an increased percentage of death induced by A398. These results indicate that the compound induced apoptosis through activation of intrinsic and extrinsic death pathways with the mechanism involving the inhibition of the MAPKs and Bcl-2. Taken together, our findings suggest that A398 has an anticancer potential, proving itself to be a candidate for preclinical studies.
    PLoS ONE 09/2014; 9(9):e107404. DOI:10.1371/journal.pone.0107404 · 3.23 Impact Factor
  • Source
    • "Hence, the ability of tumor cells to respond and activate the apoptotic program may, in part, determine the success of the therapeutic strategy [39]. It is well documented that apoptosis can be induced by a variety of drugs with diverse chemical structures and different mechanisms of action, and two major routes including the death-receptor pathway and the mitochondrial-pathway have been identified [40]. Apoptosis is a highly regulated process that involves many proteins and genes [40, 41]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The 3β, 6β, 16β-trihydroxylup-20(29)-ene (TTHL) is a pentacyclic triterpene obtained from the medicinal plant Combretum leprosum Mart. In folk medicine, this plant is popularly known as mofumbo, cipoaba or mufumbo, and is used to treat several diseases associated with inflammation and pain. We investigated the antitumor efficacy of TTHL isolated from C. leprosum. The TTHL cytotoxic effect was investigated in MRC5, MCF-7, HepG2, T24, HCT116, HT29, and CACO-2 cells after 24, 48, 72 and 120 h of treatment. The mechanisms of cell death and DNA damage induction were investigated by flow cytometry and comet assay, respectively. The results indicated that TTHL induced a time- and concentration-dependent growth inhibition in all human cancer cell lines. The cytotoxicity was more pronounced in MCF-7 breast cancer cells, with an IC50 of 0.30 μg/mL at 120 h. We therefore evaluated the cell death mechanism induced by TTHL (IC20, IC50, and IC80) in MCF-7 cells at 24 h. We found that the treatment with IC50 and IC80 TTHL for 24 h induced apoptosis in 14% (IC50) and 52% (IC80) of MCF-7 cells. The apoptosis induced by TTHL was accompanied by increased levels of both cleaved caspase-9 and intracellular ROS. In order to further understand the biological mechanism of TTHL-induced cytotoxicity, we have also investigated its effect on different Saccharomyces cerevisiae yeast strains. The mutant strains sod1Δ, sod2Δ, and sod1Δsod2Δ, which are deficient in superoxide dismutase antioxidant defenses, were hypersensitive to TTHL, suggesting that its capacity to disturb cellular redox balance plays a role in drug toxicity. Moreover, TTHL induced mutagenicity in the yeast strain XV185-14c. Taken together, the results suggest that TTHL forms covalent adducts with cellular macromolecules, potentially disrupting cellular function and triggering apoptosis.
    BMC Complementary and Alternative Medicine 08/2014; 14(1):280. DOI:10.1186/1472-6882-14-280 · 2.02 Impact Factor
Show more