Back to the Future: Can physical models of passive membrane permeability help reduce drug candidate attrition and move us beyond QSPR?

Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093-0340.
Chemical Biology &amp Drug Design (Impact Factor: 2.51). 10/2012; DOI: 10.1111/cbdd.12074
Source: PubMed

ABSTRACT It is widely recognized that ADMET (Adsorption, Distribution, Metabolism, Excretion - Toxicology) liabilities kill the majority of drug candidates that progress to clinical trials. The development of computational models to predict small molecule membrane permeability is therefore of considerable scientific and public health interest. Empirical qualitative structure permeability relationship (QSPR) models of permeability have been a mainstay in industrial applications, but lack a deep understanding of the underlying biological physics. Others and we have shown that implicit solvent models to predict passive permeability for small molecules exhibit mediocre predictive performance when validated across experimental test sets. Given the vast increase in computer power, more efficient parallelization schemes, and extension of current atomistic simulation codes to general use graphical processing units (GPUs), the development and application of physical models based on all-atom simulations may now be feasible. Preliminary results from rigorous free energy calculations using all-atom simulations indicate that performance relative to implicit solvent models may be improved, but many outstanding questions remain. Here we review the current state of the art physical models for passive membrane permeability prediction, and present a prospective look at promising new directions for all-atom approaches. © 2012 John Wiley & Sons A/S.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drug design efforts are turning to a new generation of therapeutic targets, such as protein-protein interactions (PPIs), that had previously been considered "undruggable" by typical small molecules. There is an emerging view that accessing these targets will require molecules that are larger and more complex than typical small molecule drugs. Here, we present a methodology for the discovery of geometrically diverse, membrane permeable cyclic peptide scaffolds based on the synthesis and permeability screening of a combinatorial library, followed by deconvolution of membrane-permeable scaffolds to identify cyclic peptides with good to excellent passive cell permeabilities. We use a combination of experi-mental and computational approaches to investigate structure-permeability relationships in one of these scaffolds, and un-cover structural and conformational factors that govern passive membrane diffusion in a related set of cyclic peptide dia-stereomers. Further, we investigate the dependency of permeability on side chain identity of one of these scaffolds through single-point diversifications to show the adaptability of these scaffolds towards development of permeability-biased librar-ies suitable for bioactivity screens. Overall, our results demonstrate that many novel, cell permeable scaffolds exist beyond those found in extant natural products, and that such scaffolds can be rapidly identified using a combination of synthesis and deconvolution which can, in principle, be applied to any type of macrocyclic template.
    Journal of the American Chemical Society 12/2014; DOI:10.1021/ja508766b · 11.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: When a range of lipid bilayers are melted to the disordered fluid phase from the (much less permeable) ordered gel phase, their permeability to a variety of permeants shows a peak at the transition temperature and drops off with increasing temperature, rather than just rising as melting proceeds. To explore this anomalous behavior, a simulated coarse-grained lipid membrane model that exhibits a phase transition upon expansion or compression was studied to determine how the permeation rate of a simple particle depends on the phase composition in the two-phase region and on particle size. The permeation rate and each phase's area fraction and area density could be directly calculated, along with the probability that the permeant would cross in either phase or at interfacial regions. For large permeants and system sizes, conditions could be found where permeability increases upon compression of the bilayer. Permeation was negligible in the gel phase and, in contrast to the predictions of the "leaky interface" hypothesis, was not enriched in interfacial regions. The anomalous effect could instead be attributed to an increase in the area per lipid of fluid phase domains. This result motivated a model for the decrease in effective permeability barrier through fluid phase domains arising from a decrease in the length of the gel/fluid interface at the midpoint of a permeation event.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accurate calculation of permeabilities from first-principles has been a long-standing challenge for computer simulations, notably in the context of drug discovery, as a route to predict the propensity of small, organic molecules to spontaneously translocate biological membranes. Of equal importance is the understanding of the permeation process and the pathway followed by the permeant from the aqueous medium to the interior of the lipid bilayer, and back out again. A convenient framework for the computation of permeabilities is provided by the solubility-diffusion model, which requires knowledge of the underlying free-energy and diffusivity landscapes. Here, we develop a formalism that includes an explicit description of the orientational motion of the solute as it diffuses across the membrane. Toward this end, we have generalized a recently proposed method that reconciles thermodynamics and kinetics in importance-sampling simulations by means of a Bayesian-inference scheme to reverse-solve the underlying Smoluchowski equation. Performance of the proposed formalism is examined in the model cases of a water and an ethanol molecule crossing a fully hydrated lipid bilayer. Our analysis reveals a conspicuous dependence of the free-energy and rotational diffusivity on the orientation of ethanol when it lies within the headgroup region of the bilayer. Specifically, orientations for which the hydroxyl group lies among the polar lipid head groups, while the ethyl group recedes toward the hydrophobic interior are associated with free-energy minima ∼2kBT deep, as well as significantly slower orientational kinetics compared to the bulk solution or the core of the bilayer. The conspicuous orientational anisotropy of ethanol at the aqueous interface is suggestive of a complete rotation of the permeant as it crosses the hydrophobic interior of the membrane.
    Journal of Chemical Theory and Computation 07/2014; 10(7):2710-2718. DOI:10.1021/ct500209j · 5.31 Impact Factor