Vitamin D in cutaneous carcinogenesis: Part II

Department of Dermatology, Stanford University, Stanford, California. Electronic address: .
Journal of the American Academy of Dermatology (Impact Factor: 4.45). 11/2012; 67(5):817.e1-817.e11. DOI: 10.1016/j.jaad.2012.07.022
Source: PubMed


The role of vitamin D in health maintenance and disease prevention in fields ranging from bone metabolism to cancer is currently under intensive investigation. A number of epidemiologic studies have suggested that vitamin D may have a protective effect on cancer risk and cancer-associated mortality. With regard to skin cancer, epidemiologic and laboratory studies suggest that vitamin D and its metabolites may have a similar risk reducing effect. Potential mechanisms of action include inhibition of the hedgehog signaling pathway and upregulation of nucleotide excision repair enzymes. The key factor complicating the association between vitamin D and skin cancer is ultraviolet B radiation. The same spectrum of ultraviolet B radiation that catalyzes the production of vitamin D in the skin also causes DNA damage that can lead to epidermal malignancies. Part II of this continuing medical education article will summarize the literature on vitamin D and skin cancer to identify evidence-based optimal serum levels of vitamin D and to recommend ways of achieving those levels while minimizing the risk of skin cancer.

7 Reads
  • Source
    • "Like most other skin cells, keratinocytes express VDR (Lehmann et al., 2004; Holick, 2007); in these cells, 1,25-dihydroxyvitamin D, blocks proliferation and promotes differentiation in vitro (Lehmann et al., 2004; Holick, 2007; Haussler et al., 2012). Interestingly, it has been reported that the combination of 1,25-dihydroxyvitamin D and the retinoic acid metabolite isotretinoin is efficient in the therapy of precancerous skin lesions and of non-melanoma skin cancer (cutaneous squamous and basal cell carcinomas) (Tang et al., 2012a,b; Mason and Reichrath, 2013). Moreover, it has been demonstrated that VDR ablation promotes chemically induced skin carcinogenesis (Tang et al., 2012a,b; Mason and Reichrath, 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: P53 and its family members have been implicated in the direct regulation of the vitamin D receptor (VDR). Vitamin D- and p53-signaling pathways have a significant impact on spontaneous or carcinogen-induced malignant transformation of cells, with VDR and p53 representing important tumour suppressors. VDR and the p53/p63/p73 proteins all function typically as receptors or sensors that turn into transcriptional regulators upon stimulus, with the main difference being that the nuclear VDR is activated as a transcription factor after binding its naturally occurring ligand 1,25-dihydroxyvitamin D with high affinity while the p53 family of transcription factors, mostly in the nucleoplasm, responds to a large number of alterations in cell homeostasis commonly referred to as stress. An increasing body of evidence now convincingly demonstrates a cross-talk between vitamin D- and p53-signaling that occurs at different levels, has genome-wide implications and that should be of high importance for many malignancies, including non-melanoma skin cancer. One interaction involves the ability of p53 to increase skin pigmentation via POMC derivatives including alpha-MSH and ACTH. Pigmentation protects the skin against UV-induced DNA damage and skin carcinogenesis, yet on the other hand reduces cutaneous synthesis of vitamin D. A second level of interaction may be through the ability of 1,25-dihydroxyvitamin D to increase the survival of skin cells after UV irradiation. UV irradiation-surviving cells show significant reductions in thymine dimers in the presence of 1,25-dihydroxyvitamin D that are associated with increased nuclear p53 protein expression, and significantly reduced NO products. A third level of interaction is documented by the ability of vitamin D compounds to regulate the expression of the murine double minute 2 (MDM2) gene in dependence of the presence of wild-type p53. MDM2 has a well established role as a key negative regulator of p53 activity. Finally, p53 and famil
    Frontiers in Physiology 06/2014; 5:166. DOI:10.3389/fphys.2014.00166 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Solar UV (UV)-B-radiation exerts both beneficial and adverse effects on human health. On the one hand, it is the most important environmental risk factor for the development of non-melanoma skin cancer [NMSC; most importantly basal (BCC) and squamous (SCC) cell carcinomas], that represent the most common malignancies in Caucasian populations. On the other hand, the human body's requirements of vitamin D are mainly achieved by UV-B-induced cutaneous photosynthesis. This dilemma represents a serious problem in many populations, for an association of vitamin D-deficiency and multiple independent diseases including various types of cancer has been convincingly demonstrated. In line with these findings, epidemiologic and laboratory investigations now indicate that vitamin D and its metabolites have a risk reducing effect for NMSC. Potential mechanisms of action include inhibition of the hedgehog signaling pathway (BCC) and modulation of p53-mediated DNA damage response (SCC). As a consequence of these new findings it can be concluded that UV-B-radiation exerts both beneficial and adverse effects on risk and prognosis of NMSC. It can be assumed that many independent factors, including frequency and dose of UV-B exposure, skin area exposed, and individual factors (such as skin type and genetic determinants of the skin`s vitamin D status and of signaling pathways that are involved in the tumorigenesis of NMSC) determine whether UV-B exposure promotes or inhibits tumorigenesis of NMSC. Moreover, these findings may help to explain many of the differential effects of UV-B radiation on risk of NMSC, including variation in the dose-dependent risk for development of SCC in situ (actinic keratosis, AK), invasive SCC, and BCC. In this review, we analyze the relevance of the vitamin D endocrine system (VDES) for tumorigenesis, prevention, and treatment of NMSC and give an overview of present concepts and future perspectives.
    Dermato-Endocrinology 01/2013; 5(1):38-50. DOI:10.4161/derm.24156
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The “sunshine” vitamin is a hot topic that attracted ample attention over the past decade, specially that a considerable proportion of the worldwide population are deficient in this essential nutrient. Vitamin D was primarily acknowledged for its importance in bone formation, however; increasing evidence point to its interference with the proper function of nearly every tissue in our bodies including brain, heart, muscles, immune system and skin. Thereby its deficiency has been incriminated in a long panel of diseases including cancers, autoimmune diseases, cardiovascular and neurological disorders. Its involvement in the pathogenesis of different dermatological diseases is no exception and has been the subject of much research over the recent years. In the current review, we will throw light on this highly disputed vitamin that is creating a significant concern from a dermatological perspective. Furthermore, the consequences of its deficiency on the skin will be in focus.
    Journal of Advanced Research 02/2014; DOI:10.1016/j.jare.2014.01.011
Show more