Article

A low-?9tetrahydrocannabinol cannabis extract induces hyperphagia in rats

aSchools of Psychology and Clinical Language Sciences bPharmacy, University of Reading, Reading, Berkshire, UK.
Behavioural Pharmacology (Impact Factor: 2.3). 11/2010; 21(8):769–772. DOI: 10.1097/FBP.0b013e328340a062

ABSTRACT Appetite stimulation via partial agonism of cannabinoid type 1 receptors by Δ9tetrahydrocannabinol (Δ9THC) is well documented and can be modulated by non-Δ9THC phytocannabinoids. Δ9THC concentrations sufficient to elicit hyperphagia induce changes to both appetitive (reduced latency to feed) and consummatory (increased meal one size and duration) behaviours. Here, we show that a cannabis extract containing too little Δ9THC to stimulate appetite can induce hyperphagia solely by increasing appetitive behaviours. Twelve, male Lister hooded rats were presatiated before treatment with a low-Δ9THC cannabis extract (0.5, 1.0, 2.0 and 4.0 mg/kg). Hourly intake and meal pattern data were recorded and analyzed using one-way analyses of variance followed by Bonferroni post-hoc tests. The cannabis extract significantly increased food intake during the first hour of testing (at 4.0 mg/kg) and significantly reduced the latency to feed versus vehicle treatments (at doses ≥1.0 mg/kg). Meal size and duration were unaffected. These results show only the increase in appetitive behaviours, which could be attributed to non-Δ9THC phytocannabinoids in the extract rather than Δ9THC. Although further study is required to determine the constituents responsible for these effects, these results support the presence of non-Δ9THC cannabis constituent(s) that exert a stimulatory effect on appetite and likely lack the detrimental psychoactive effects of Δ9THC.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND AND PURPOSE Endocannabinoid systems are strongly implicated in the physiological control of appetite and eating behaviour, with cannabinoid CB(1) receptor agonists and antagonists, respectively, increasing or decreasing food intake. This study examined the acute actions of the putative endocannabinoid noladin ether on food intake and eating motivation, assessing how it affects the amount of work expended by animals to obtain food. EXPERIMENTAL APPROACH Non-deprived male rats were injected systemically with noladin ether to assess its acute effects on ad libitum feeding of a standard laboratory diet. Additionally, the effects of noladin on lever pressing for palatable food were determined using a progressive ratio (PR) operant paradigm. KEY RESULTS Noladin dose dependently increased 2 h food intake, with a significant effect over 1 h after a dose of 0.5 mg·kg(-1). In the PR test, this hyperphagic dose of noladin ether promoted sustained high rates of responding and significantly increased the total number of lever presses and break-point. These latter effects were prevented by pretreatment with 1.0 mg·kg(-1) of the selective CB(1) antagonist surinabant (SR147778), that alone had no effect on responding. CONCLUSIONS AND IMPLICATIONS This is the first report of hyperphagia induced by acute noladin administration, and the first description of behavioural actions in rats. Consistent with prevailing notions about the role of endocannabinoids in appetite, a hyperphagic dose of noladin markedly increased efforts expended by animals to obtain food. Thus, noladin exerts a specific action on eating motivation; possibly promoting eating by increasing the incentive value of food.
    British Journal of Pharmacology 02/2012; 166(6):1815-21. · 5.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Soon after the discovery of cannabis by western societies, its psychotropic effects overshadowed its medical benefits. However, investigation into the molecular action of the main constituents of cannabis has led to the discovery of an intercellular signalling system, called the endocannabinoid system (ECS). The ECS comprises a set of molecular components, including enzymes, signalling lipids and G-protein coupled receptors, which has an outstanding role in modulating eating behaviour and energy homeostasis. Interestingly, evidence has shown that the ECS is present at the central and peripheral nervous system, modulating the function of the hypothalamus, the brain reward system and the brainstem, and coordinating the crosstalk between these brain structures and peripheral organs. Indeed, the ECS is present and functional in metabolically relevant peripheral tissues, directly modulating their physiology. In the context of a global obesity pandemic, these discoveries are highly suggestive in order to design novel pharmaceutical tools to fight obesity and related morbidities. In fact, a cannabinoid-based first generation of drugs was developed and marketed. Their failure, due to central side-effects, is leading to a second generation of these drugs unable to cross the blood-brain barrier, as well as other ECS-focused strategies that are still in the pipeline. In the next few years we will hopefully know whether such an important player in energy homeostasis can be successfully targeted without significantly affecting other vital processes related to mood and sense of well-being. Copyright © 2013 John Wiley & Sons, Ltd.
    Drug Testing and Analysis 12/2013; · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased food consumption following ∆(9)-tetrahydrocannabinol-induced cannabinoid type 1 receptor agonism is well documented. However, possible non-∆(9)-tetrahydrocannabinol phytocannabinoid-induced feeding effects have yet to be fully investigated. Therefore, we have assessed the effects of the individual phytocannabinoids, cannabigerol, cannabidiol and cannabinol, upon feeding behaviors. Adult male rats were treated (p.o.) with cannabigerol, cannabidiol, cannabinol or cannabinol plus the CB(1)R antagonist, SR141716A. Prior to treatment, rats were satiated and food intake recorded following drug administration. Data were analyzed for hourly intake and meal microstructure. Cannabinol induced a CB(1)R-mediated increase in appetitive behaviors via significant reductions in the latency to feed and increases in consummatory behaviors via increases in meal 1 size and duration. Cannabinol also significantly increased the intake during hour 1 and total chow consumed during the test. Conversely, cannabidiol significantly reduced total chow consumption over the test period. Cannabigerol administration induced no changes to feeding behavior. This is the first time cannabinol has been shown to increase feeding. Therefore, cannabinol could, in the future, provide an alternative to the currently used and psychotropic ∆(9)-tetrahydrocannabinol-based medicines since cannabinol is currently considered to be non-psychotropic. Furthermore, cannabidiol reduced food intake in line with some existing reports, supporting the need for further mechanistic and behavioral work examining possible anti-obesity effects of cannabidiol.
    Psychopharmacology 04/2012; 223(1):117-29. · 4.06 Impact Factor