Landis, S. C. et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490, 187-191

National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA.
Nature (Impact Factor: 41.46). 10/2012; 490(7419):187-91. DOI: 10.1038/nature11556
Source: PubMed


The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress.

Download full-text


Available from: Oswald Steward,
    • "The type of apparatus used must be carefully considered as mice behave differently in different designs of the same apparatus. For example, different designs of the Barnes maze result in different types of learning and memory [216] [217]. Finally, one must ensure that the behavioral measures represent the psychological construct that they are meant to measure. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Preclinical studies are essential for translation to disease treatments and effective use in clinical practice. An undue emphasis on single approaches to Alzheimer's disease (AD) appears to have retarded the pace of translation in the field, and there is much frustration in the public about the lack of an effective treatment. We critically reviewed past literature (1990-2014), analyzed numerous data, and discussed key issues at a consensus conference on Brain Ageing and Dementia to identify and overcome roadblocks in studies intended for translation. We highlight various factors that influence the translation of preclinical research and highlight specific preclinical strategies that have failed to demonstrate efficacy in clinical trials. The field has been hindered by the domination of the amyloid hypothesis in AD pathogenesis while the causative pathways in disease pathology are widely considered to be multifactorial. Understanding the causative events and mechanisms in the pathogenesis are equally important for translation. Greater efforts are necessary to fill in the gaps and overcome a variety of confounds in the generation, study design, testing, and evaluation of animal models and the application to future novel anti-dementia drug trials. A greater variety of potential disease mechanisms must be entertained to enhance progress.
    Journal of Alzheimer's disease: JAD 09/2015; 47(4):815-843. DOI:10.3233/JAD-150136 · 4.15 Impact Factor
  • Source
    • "Similar suggestions have been made for biological studies (Kozlov and Hurlbert, 2006; Verbitsky, 2013) and research in sports medicine and sports science (Hayen, 2006). It was recently noted that when a biological variation in response to some intervention was the variable of interest in the analysis of samples, considering the natural grouping of objects was essential (Landis et al., 2012). Therefore, the current study has three main goals: (i) to determine gender differences in start reaction times for four different 50 m stroke final events at six Swimming World Championships, (ii) to assess the effects of ignoring natural groupings at Swimming World Championships, and (iii) to evaluate the effects of the large sample size on statistical inferences when gender differences are examined with respect to start reaction times among elite swimmers at Swimming World Championships. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Four 50 meter male/female finals ‐ the freestyle, butterfly, breaststroke, and backstroke ‐ swum during individual events at the Swimming World Championships (SWCs) can be defined in four clusters. The aim of the present study was to use a single‐unit design structure, in which the swimmer was defined at only one scale, to evaluate gender differences in start reaction times among elite swimmers in 50 m events. The top six male and female swimmers in the finals of four swimming stroke final events in six SWCs were analyzed. An unpaired t‐test was used. The p‐values were evaluated using Neo‐Fisherian significance assessments (Hurlbert and Lombardi, 2012). For the freestyle, gender differences in the start reaction times were positively identified for five of the six SWCs. For the backstroke, gender differences in the start reaction times could be dismissed for five of the six SWCs. For both the butterfly and breaststroke, gender differences in the start reaction times yielded inconsistent statistical differences. Pooling all swimmers together (df = 286) showed that an overall gender difference in the start reaction times could be positively identified: p = 0.00004. The contrast between the gender differences in start reaction times between the freestyle and backstroke may be associated with different types of gender adaptations to swimming performances. When the natural groupings of swimming stroke final events were ignored, sacrificial pseudoreplication occurred, which may lead to erroneous statistical differences.
    Journal of Human Kinetics 09/2014; 42(1):215‐222. DOI:10.2478/hukin‐2014‐0075 · 1.03 Impact Factor
  • Source
    • "In addition, commonly used methods for statistical interpretation of treatment effects are at high risk of introducing bias [46], [47]. Second, several groups have called for improved reporting standards to improve reproducibility, rigorous assessment of results and efficient use of animals [41], [42], [48], [49]. A broadly applicable tool would need to incorporate both of these aspects. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sensory processing in the spinal cord during disease states can reveal mechanisms for novel treatments, yet very little is known about pain processing at this level in the most commonly used animal models of articular pain. Here we report a test of the prediction that two clinically effective compounds, naproxen (an NSAID) and oxycodone (an opiate), are efficacious in reducing the response of spinal dorsal horn neurons to noxious knee joint rotation in the monosodium iodoacetate (MIA) sensitized rat. The overall objective for these experiments was to develop a high quality in vivo electrophysiology assay to confidently test novel compounds for efficacy against pain. Given the recent calls for improved preclinical experimental quality we also developed and implemented an Assay Capability Tool to determine the quality of our assay and ensure the quality of our results. Spinal dorsal horn neurons receiving input from the hind limb knee joint were recorded in anesthetized rats 14 days after they were sensitized with 1 mg of MIA. Intravenous administered oxycodone and naproxen were each tested separately for their effects on phasic, tonic, ongoing and afterdischarge action potential counts in response to innocuous and noxious knee joint rotation. Oxycodone reduced tonic spike counts more than the other measures, doing so by up to 85%. Tonic counts were therefore designated the primary endpoint when testing naproxen which reduced counts by up to 81%. Both reductions occurred at doses consistent with clinically effective doses for osteoarthritis. These results demonstrate that clinically effective doses of standard treatments for osteoarthritis reduce pain processing measured at the level of the spinal cord for two different mechanisms. The Assay Capability Tool helped to guide experimental design leading to a high quality and robust preclinical assay to use in discovering novel treatments for pain.
    PLoS ONE 08/2014; 9(8):e106108. DOI:10.1371/journal.pone.0106108 · 3.23 Impact Factor
Show more