Article

Toward a systems-level understanding of the Hedgehog signaling pathway: defining the complex, robust, and fragile

Department of Anatomy and Cell Biology, The Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA. .
Wiley Interdisciplinary Reviews Systems Biology and Medicine (Impact Factor: 3.01). 01/2013; 5(1). DOI: 10.1002/wsbm.1193
Source: PubMed

ABSTRACT The Hedgehog (Hh) signaling pathway plays a fundamental role in development and tissue homeostasis, governing cell proliferation and differentiation, as well as cell fate. Hh signaling is mediated by an intricate network of proteins that have positive and negative roles that work in concert to fine-tune signaling output. Using feedback loops, redundancy and subcellular compartmentalization, the temporal and spatial dynamics of Hh signaling have evolved to be complex and robust. Yet developmental defects and cancers that arise from perturbation of the Hh pathway reflect specific pathway fragilities. Importantly, these fragile nodes and edges present opportunities for the design of targeted therapies. Despite these significant advances, unconnected molecular links within the Hh pathway still remain, many of which revolve around the dependence of Hh signaling on the primary cilium, an antenna-like sensory organelle. A systems-level understanding of Hh signaling and of ciliary biology will comprehensively define all nodes and edges of the Hh signaling network and will help identify precise therapeutic targets. WIREs Syst Biol Med 2012. doi: 10.1002/wsbm.1193 For further resources related to this article, please visit the WIREs website.

3 Followers
 · 
69 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Renal cystic diseases are a leading cause of renal failure. Mutations associated with renal cystic diseases reside in genes encoding proteins that localize to primary cilia. These cystoproteins can disrupt ciliary structure or cilia-mediated signaling, although molecular mechanisms connecting cilia function to renal cystogenesis remain unclear. The ciliary gene, Thm1(Ttc21b), negatively regulates Hedgehog signaling and is most commonly mutated in ciliopathies. We report that loss of murine Thm1 causes cystic kidney disease, with persistent proliferation of renal cells, elevated cAMP levels, and enhanced expression of Hedgehog signaling genes. Notably, the cAMP-mediated cystogenic potential of Thm1-null kidney explants was reduced by genetically deleting Gli2, a major transcriptional activator of the Hedgehog pathway, or by culturing with small molecule Hedgehog inhibitors. These Hedgehog inhibitors acted independently of protein kinase A and Wnt inhibitors. Furthermore, simultaneous deletion of Gli2 attenuated the renal cystic disease associated with deletion of Thm1. Finally, transcripts of Hedgehog target genes increased in cystic kidneys of two other orthologous mouse mutants, jck and Pkd1, and Hedgehog inhibitors reduced cystogenesis in jck and Pkd1 cultured kidneys. Thus, enhanced Hedgehog activity may have a general role in renal cystogenesis and thereby present a novel therapeutic target.
    Journal of the American Society of Nephrology 04/2014; 25(10). DOI:10.1681/ASN.2013070735 · 9.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diphospho-myo-inositol polyphosphates have many roles to play including roles in apoptosis, vesicle trafficking, the response of cells to stress, the regulation of telomere length and DNA damage repair, and inhibition of the cyclin-dependent kinase Pho85 system that monitors phosphate levels. This review focuses on the three classes of enzymes involved in the metabolism of these compounds - inositol hexakisphosphate kinases (IP6K), inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinases (PPIP5K), and diphosphoinositol polyphosphate phosphohydrolases (DIPP). However, these enzymes have roles beyond being mere catalysts, and their interactions with other proteins have cellular consequences. Through their interactions the three inositol hexakisphosphate kinases have roles in exocytosis, diabetes, the response to infection, and apoptosis. The two inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinases influence the cellular response to phosphatidylinositol (3,4,5)-trisphosphate and the migration of pleckstrin homology domain-containing proteins to the plasma membrane. The five diphosphoinositol polyphosphate phosphohydrolases interact with ribosomal proteins and transcription factors, and proteins involved in membrane trafficking, exocytosis, ubiquitination and the proteasomal degradation of target proteins. Possible directions for future research to further elucidate the roles of these enzymes are highlighted. This article is protected by copyright. All rights reserved.
    FEBS Journal 10/2013; DOI:10.1111/febs.12575 · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New, small molecule Hedgehog (Hh) pathway inhibitors, such as the furanoditerpenoid taepeenin D, are of high medicinal importance. To establish key structure–activity relationships (SARs) for this lead, a synthetic sequence has been developed for the expedient preparation of several derivatives and their evaluation as Hh inhibitors exploiting its structural similarity to abietic acid. While C(14) substitution is not essential for biological activity, the presence of a hydrogen bond acceptor at C(6) and an intact benzofuran moiety are.
    Organic Letters 06/2014; 16(12):3344-3347. DOI:10.1021/ol501370j · 6.32 Impact Factor