Performance of small cluster surveys and the clustered LQAS design to estimate local-level vaccination coverage in Mali

Emerging Themes in Epidemiology (Impact Factor: 2.59). 10/2012; 9(1):6. DOI: 10.1186/1742-7622-9-6
Source: PubMed

ABSTRACT BACKGROUND: Estimation of vaccination coverage at the local level is essential to identify communities that may require additional support. Cluster surveys can be used in resource-poor settings, when population figures are inaccurate. To be feasible, cluster samples need to be small, without losing robustness of results. The clustered LQAS (CLQAS) approach has been proposed as an alternative, as smaller sample sizes are required. METHODS: We explored (i) the efficiency of cluster surveys of decreasing sample size through bootstrapping analysis and (ii) the performance of CLQAS under three alternative sampling plans to classify local VC, using data from a survey carried out in Mali after mass vaccination against meningococcal meningitis group A. RESULTS: VC estimates provided by a 10 x 15 cluster survey design were reasonably robust. We used them to classify health areas in three categories and guide mop-up activities: i) health areas not requiring supplemental activities; ii) health areas requiring additional vaccination; iii) health areas requiring further evaluation. As sample size decreased (from 10 x 15 to 10 x 3), standard error of VC and ICC estimates were increasingly unstable. Results of CLQAS simulations were not accurate for most health areas, with an overall risk of misclassification greater than 0.25 in one health area out of three and greater than 0.50 in one out of two. CONCLUSIONS: Small sample cluster surveys (10 x 15) are acceptably robust for classification of VC at local level. We do not recommend the CLQAS method as currently formulated for evaluating vaccination programmes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Traditional Lot Quality Assurance Sampling (LQAS) designs assume observations are collected using simple random sampling. Alternatively, randomly sampling clusters of observations and then individuals within clusters reduces costs but decreases the precision of the classifications. In this paper, we develop a general framework for designing the cluster(C)-LQAS system and illustrate the method with the design of data quality assessments for the community health worker program in Rwanda. The C-LQAS sample sizes provided in this paper constrain misclassification risks below user-specified limits. Multiple C-LQAS systems meet the specified risk requirements, but numerous considerations, including per-cluster versus per-individual sampling costs, help identify optimal systems for distinct applications.To determine sample size and decision rules for C-LQAS, we use the beta-binomial distribution to account for inflated risk of errors introduced by sampling clusters at the first stage. We present general theory and code for sample size calculations. We show the utility of C-LQAS for data quality assessments, but the method generalizes to numerous applications. This paper provides the necessary technical detail and supplemental code to support the design of C-LQAS for specific programs.
    Emerging Themes in Epidemiology 10/2013; 10(1):11. DOI:10.1186/1742-7622-10-11 · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transmission assessment surveys (TAS) for lymphatic filariasis have been proposed as a platform to assess the impact of mass drug administration (MDA) on soil-transmitted helminths (STHs). This study used computer simulation and field data from pre- and post-MDA settings across Kenya to evaluate the performance and cost-effectiveness of the TAS design for STH assessment compared with alternative survey designs. Variations in the TAS design and different sample sizes and diagnostic methods were also evaluated. The district-level TAS design correctly classified more districts compared with standard STH designs in pre-MDA settings. Aggregating districts into larger evaluation areas in a TAS design decreased performance, whereas age group sampled and sample size had minimal impact. The low diagnostic sensitivity of Kato-Katz and mini-FLOTAC methods was found to increase misclassification. We recommend using a district-level TAS among children 8-10 years of age to assess STH but suggest that key consideration is given to evaluation unit size. © The American Society of Tropical Medicine and Hygiene.
    The American journal of tropical medicine and hygiene 12/2014; 92(2). DOI:10.4269/ajtmh.14-0435 · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives To assess the bias incurred when curtailment of Lot Quality Assurance Sampling (LQAS) is ignored, to present unbiased estimators, to consider the impact of cluster sampling by simulation and to apply our method to published polio immunization data from Nigeria. Methods We present estimators of coverage when using two kinds of curtailed LQAS strategies: semicurtailed and curtailed. We study the proposed estimators with independent and clustered data using three field-tested LQAS designs for assessing polio vaccination coverage, with samples of size 60 and decision rules of 9, 21 and 33, and compare them to biased maximum likelihood estimators. Lastly, we present estimates of polio vaccination coverage from previously published data in 20 local government authorities (LGAs) from five Nigerian states. ResultsSimulations illustrate substantial bias if one ignores the curtailed sampling design. Proposed estimators show no bias. Clustering does not affect the bias of these estimators. Across simulations, standard errors show signs of inflation as clustering increases. Neither sampling strategy nor LQAS design influences estimates of polio vaccination coverage in 20 Nigerian LGAs. When coverage is low, semicurtailed LQAS strategies considerably reduces the sample size required to make a decision. Curtailed LQAS designs further reduce the sample size when coverage is high. Conclusions Results presented dispel the misconception that curtailed LQAS data are unsuitable for estimation. These findings augment the utility of LQAS as a tool for monitoring vaccination efforts by demonstrating that unbiased estimation using curtailed designs is not only possible but these designs also reduce the sample size.
    Tropical Medicine & International Health 12/2013; 19(3). DOI:10.1111/tmi.12247 · 2.30 Impact Factor