Simulation Shows Hospitals That Cooperate On Infection Control Obtain Better Results Than Hospitals Acting Alone

Health Affairs (Impact Factor: 4.97). 10/2012; 31(10):2295-303. DOI: 10.1377/hlthaff.2011.0992
Source: PubMed


Efforts to control life-threatening infections, such as with methicillin-resistant Staphylococcus aureus (MRSA), can be complicated when patients are transferred from one hospital to another. Using a detailed computer simulation model of all hospitals in Orange County, California, we explored the effects when combinations of hospitals tested all patients at admission for MRSA and adopted procedures to limit transmission among patients who tested positive. Called "contact isolation," these procedures specify precautions for health care workers interacting with an infected patient, such as wearing gloves and gowns. Our simulation demonstrated that each hospital's decision to test for MRSA and implement contact isolation procedures could affect the MRSA prevalence in all other hospitals. Thus, our study makes the case that further cooperation among hospitals-which is already reflected in a few limited collaborative infection control efforts under way-could help individual hospitals achieve better infection control than they could achieve on their own.

12 Reads
  • Source
    • "Kaye et al. reported that the average immediate economic impact from treating a deep incisional or organ space surgical site infection is $43,970 in patients 65 years and older [3], not counting possible long term treatment and disability. Unlike other adverse events, eliminating the occurrence of infections cannot be completely controlled and regulated by a single facility, as infection control measures at one facility may well affect and contribute to the MRSA prevalence in other nearby facilities [4]. Many different types of facilities are at risk, along with their service communities, making the need to control healthcare associated infections even more imperative. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Agency for Healthcare Research & Quality (AHRQ) found that Methicillin-resistant Staphylococcus aureus (MRSA) is associated with up to 375,000 infections and 23,000 deaths in the United States. It is a major cause of surgical site infections, with a higher mortality and longer duration of care than Methicillin-sensitive Staphylococcus aureus. A multifactorial bundled approach is needed to control this epidemic, with single interventions unlikely to have a significant impact on attenuating MRSA infection rates. Active surveillance has been studied in a wide range of surgical patients, including surgical intensive care and non-intensive care units; cardiac, vascular, orthopedic, obstetric, head and neck cancer and gastrostomy patients. There is sufficient evidence demonstrating a beneficial effect of surveillance and eradication prior to surgery to recommend its use on an expanded basis. Studies on MRSA surveillance in surgical patients that were published over the last 10 years were reviewed. In at least five of these studies, the MRSA colonization status of patients was reported to be a factor in preoperative antibiotic selection, with the modification of treatment regiments including the switching to vancomycin or teicoplanin in MRSA positive preoperative patients. Several authors also used decolonization protocols on all preoperative patients but used surveillance to determine the duration of the decolonization. Universal decolonization of all patients, regardless of MRSA status has been advocated as an alternative prevention protocol in which surveillance is not utilized. Concern exists regarding antimicrobial stewardship. The daily and universal use of intranasal antibiotics and/or antiseptic washes may encourage the promotion of bacterial resistance and provide a competitive advantage to other more lethal organisms. Decolonization protocols which indiscriminately neutralize all bacteria may not be the best approach. If a patient's microbiome is markedly challenged with antimicrobials, rebuilding it with replacement commensal bacteria may become a future therapy. Preoperative MRSA surveillance allows the selection of appropriate prophylactic antibiotics, the use of extended decolonization protocols in positive patients, and provides needed data for epidemiological studies.
    05/2014; 3(1):18. DOI:10.1186/2047-2994-3-18
  • Source
    • "In addition to providing a better understanding of the spread of nosocomial infections, mathematical models have been employed to assess the effects of infection control measures. Lee et al. (2012) showed that coordinated MRSA prevention practices can result in beneficial effects for all hospitals in a county or region, even for those that do not implement the intervention: The more hospitals that work together, the greater the benefit. These results are consistent with the theoretical analysis by Smith et al. (2005), which explored, in a theoretical multi-hospital setting, the impact of inter- ventions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Results from microbiological and epidemiological investigations, as well as mathematical modelling, show that the transmission dynamics of nosocomial pathogens, especially of multiple antibiotic-resistant bacteria, is not exclusively amenable to single-hospital infection prevention measures. Crucially, their extent of spread depends on the structure of an underlying "healthcare network", as determined by inter-institutional referrals of patients. The current trend towards centralized healthcare systems favours the spread of hospital-associated pathogens, and must be addressed by coordinated regional or national approaches to infection prevention in order to maintain patient safety. Here we review recent advances that support this hypothesis, and propose a "next-generation" network-approach to hospital infection prevention and control.
    International journal of medical microbiology: IJMM 03/2013; 303(6-7). DOI:10.1016/j.ijmm.2013.02.003 · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective. Implementation of contact precautions in nursing homes to prevent methicillin-resistant Staphylococcus aureus (MRSA) transmission could cost time and effort and may have wide-ranging effects throughout multiple health facilities. Computational modeling could forecast the potential effects and guide policy making. Design. Our multihospital computational agent-based model, Regional Healthcare Ecosystem Analyst (RHEA). Setting. All hospitals and nursing homes in Orange County, California. Methods. Our simulation model compared the following 3 contact precaution strategies: (1) no contact precautions applied to any nursing home residents, (2) contact precautions applied to those with clinically apparent MRSA infections, and (3) contact precautions applied to all known MRSA carriers as determined by MRSA screening performed by hospitals. Results. Our model demonstrated that contact precautions for patients with clinically apparent MRSA infections in nursing homes resulted in a median 0.4% (range, 0%-1.6%) relative decrease in MRSA prevalence in nursing homes (with 50% adherence) but had no effect on hospital MRSA prevalence, even 5 years after initiation. Implementation of contact precautions (with 50% adherence) in nursing homes for all known MRSA carriers was associated with a median 14.2% (range, 2.1%-21.8%) relative decrease in MRSA prevalence in nursing homes and a 2.3% decrease (range, 0%-7.1%) in hospitals 1 year after implementation. Benefits accrued over time and increased with increasing compliance. Conclusions. Our modeling study demonstrated the substantial benefits of extending contact precautions in nursing homes from just those residents with clinically apparent infection to all MRSA carriers, which suggests the benefits of hospitals and nursing homes sharing and coordinating information on MRSA surveillance and carriage status.
    Infection Control and Hospital Epidemiology 02/2013; 34(2):151-60. DOI:10.1086/669091 · 4.18 Impact Factor
Show more