Measuring Adverse Events and Levels of Harm in Pediatric Inpatients With the Global Trigger Tool

Division of Hospital Medicine.
PEDIATRICS (Impact Factor: 5.3). 10/2012; 130(5). DOI: 10.1542/peds.2012-0179
Source: PubMed

ABSTRACT OBJECTIVES:To evaluate and characterize the Global Trigger Tool's (GTT's) utility in a pediatric population; to measure the rate of harm at our institution and compare it with previously established trigger tools and benchmark rates; and to describe the distribution of harm of the detected events.METHODS:Per the GTT methodology, 240 random inpatient charts were retrospectively reviewed over a 12-month pilot period for the presence of 53 predefined safety triggers. When triggers were detected, the reviewers investigated the chart more thoroughly to decide whether an adverse event occurred. Agreement with a physician reviewer was then reached, and a level of harm was assigned.RESULTS:A total of 404 triggers were detected (1.7 triggers per patient), and 88 adverse events were identified. Rates of 36.7 adverse events per 100 admissions and 76.3 adverse events per 1000 patient-days were calculated. Sixty-two patients (25.8%) had at least 1 adverse event during their hospitalization, and 18 (7.5%) had >1 event identified. Three-quarters of the events were category E (temporary harm). Two events required intervention to sustain life (category H). Two of the 6 trigger modules identified 95% of the adverse events.CONCLUSIONS:The GTT demonstrated utility in the pediatric inpatient setting. With the use of the trigger tool, we identified a rate of harm 2 to 3 times higher than previously published pediatric rates. Modifications to the trigger tool to address pediatric-specific issues could increase the test characteristics of the tool.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retrospective record review using trigger tools remains the most widely used method for measuring adverse events (AEs) to identify targets for improvement and measure temporal trends. However, medical records often contain limited information about factors contributing to AEs. We implemented an augmented trigger tool that supplemented record review with debriefing front-line staff to obtain details not included in the medical record. We hypothesised that this would foster the identification of factors contributing to AEs that could inform improvement initiatives. A trained observer prospectively identified events in consecutive patients admitted to a general medical ward in a tertiary care academic medical centre (November 2010 to February 2011 inclusive), gathering information from record review and debriefing front-line staff in near real time. An interprofessional team reviewed events to identify preventable and potential AEs and characterised contributing factors using a previously published taxonomy. Among 141 patients, 14 (10%; 95% CI 5% to 15%) experienced at least one preventable AE; 32 patients (23%; 95% CI 16% to 30%) experienced at least one potential AE. The most common contributing factors included policy and procedural problems (eg, routine protocol violations, conflicting policies; 37%), communication and teamwork problems (34%), and medication process problems (23%). However, these broad categories each included distinct subcategories that seemed to require different interventions. For instance, the 32 identified communication and teamwork problems comprised 7 distinct subcategories (eg, ineffective intraprofessional handovers, poor interprofessional communication, lacking a shared patient care, paging problems). Thus, even the major categories of contributing factors consisted of subcategories that individually related to a much smaller subset of AEs. Prospective application of an augmented trigger tool identified a wide range of factors contributing to AEs. However, the majority of contributing factors accounted for a small number of AEs, and more general categories were too heterogeneous to inform specific interventions. Successfully using trigger tools to stimulate quality improvement activities may require development of a framework that better classifies events that share contributing factors amenable to the same intervention. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to
    BMJ quality & safety 03/2015; DOI:10.1136/bmjqs-2014-003432 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Little is known about adverse events (AEs) in pediatric patients. Record review is a common methodology for identifying AEs, but in pediatrics the record review tools generally have limited focus. The aim of the present study was to develop a broadly applicable record review tool to identify AEs in pediatric inpatients.Methods Using a broad literature review and expert opinion with a modified Delphi process, a pediatric trigger tool with 88 triggers, definitions, and descriptions including AE preventability decision support was developed and tested in a random sample of 600 hospitalized pediatric patients admitted in 2010 to a single university children¿s hospital. Four registered nurse-physician teams performed complete two-stage retrospective reviews of 150 records each from either neonatal, surgical/orthopedic, medicine, or emergency medicine units.ResultsRegistered nurse review identified 296 of 600 records with triggers indicating potential AEs. Records (n¿=¿121) with only false positive triggers not indicating any potential AEs were not forwarded to the next review stage. On subsequent physician review, 204 (34.0%) of patients were found to have had 563 AEs, range 1¿27 AEs/patient. A total of 442 preventable AEs were found in 161 patients (26.8%), range 1¿22. Overall, triggers were found 3,598 times in 417 (69.5%) records, with a mean of 6 (median 1, range 0¿176) triggers per patient. The overall positive predictive value of the triggers was 22.9%, (range 0.0-100.0%). The final pediatric trigger tool, developed with a second Delphi round, required 29 triggers.ConclusionsAEs are common in pediatric patients and most are preventable. The main contributions of this study are to further develop and adapt trigger definitions, including AE preventability decision support, to introduce new triggers in pediatric care, as well as to apply pediatric triggers in different clinical specialties. Our findings resulted in a national pediatric trigger tool, and might also be adapted internationally. The pediatric trigger tool can help healthcare organizations to measure and analyze the AEs occurring in hospitalized children in order to improve patient safety.
    BMC Health Services Research 12/2014; 14(1):655. DOI:10.1186/s12913-014-0655-5 · 1.66 Impact Factor
  • Source