Article

Genetic modification of the association of paraquat and Parkinson's disease

The Parkinson's Institute, Sunnyvale, California, USA. .
Movement Disorders (Impact Factor: 5.63). 11/2012; 27(13). DOI: 10.1002/mds.25216
Source: PubMed

ABSTRACT Paraquat is one of the most widely used herbicides worldwide. It produces a Parkinson's disease (PD) model in rodents through redox cycling and oxidative stress (OS) and is associated with PD risk in humans. Glutathione transferases provide cellular protection against OS and could potentially modulate paraquat toxicity. We investigated PD risk associated with paraquat use in individuals with homozygous deletions of the genes encoding glutathione S-transferase M1 (GSTM1) or T1 (GSTT1). Eighty-seven PD subjects and 343 matched controls were recruited from the Agricultural Health Study, a study of licensed pesticide applicators and spouses in Iowa and North Carolina. PD was confirmed by in-person examination. Paraquat use and covariates were determined by interview. We genotyped subjects for homozygous deletions of GSTM1 (GSTM1*0) and GSTT1 (GSTT1*0) and tested interaction between paraquat use and genotype using logistic regression. Two hundred and twenty-three (52%) subjects had GSTM1*0, 95 (22%) had GSTT1*0, and 73 (17%; all men) used paraquat. After adjustment for potential confounders, there was no interaction with GSTM1. In contrast, GSTT1 genotype significantly modified the association between paraquat and PD. In men with functional GSTT1, the odds ratio (OR) for association of PD with paraquat use was 1.5 (95% confidence interval [CI]: 0.6-3.6); in men with GSTT1*0, the OR was 11.1 (95% CI: 3.0-44.6; P interaction: 0.027). Although replication is needed, our results suggest that PD risk from paraquat exposure might be particularly high in individuals lacking GSTT1. GSTT1*0 is common and could potentially identify a large subpopulation at high risk of PD from oxidative stressors such as paraquat. © 2012 Movement Disorder Society.

0 Followers
 · 
121 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heavy metals, various pesticide and herbicides are implicated as risk factors for human health. Paraquat, maneb, and rotenone, carbamate, and organophosphorous insecticides are examples of toxicants for which acute and chronic exposure are associated with multiple neurological disorders including Parkinson's disease. Nevertheless, the role of pesticide exposure in neurodegenerative diseases is not clear-cut, as there are inconsistencies in both the epidemiological and preclinical research. The aim of this short review is to show that at least, some of the inconsistencies are related to individual differences in susceptibility to the effects of neurotoxicants, individual differences that can be traced to the genetic constitution of the individuals and animals studies, i.e., host-based susceptibility.
    Frontiers in Genetics 09/2014; 5:327. DOI:10.3389/fgene.2014.00327
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prospective cohorts have played a major role in understanding the contribution of diet, physical activity, medical conditions, and genes to the development of many diseases, but have not been widely used for occupational exposures. Studies in agriculture are an exception. We draw upon our experience using this design to study agricultural workers to identify conditions that might foster use of prospective cohorts to study other occupational settings. Prospective cohort studies are perceived by many as the strongest epidemiologic design. It allows updating of information on exposure and other factors, collection of biologic samples before disease diagnosis for biomarker studies, assessment of effect modification by genes, lifestyle, and other occupational exposures, and evaluation of a wide range of health outcomes. Increased use of prospective cohorts would be beneficial in identifying hazardous exposures in the workplace. Occupational epidemiologists should seek opportunities to initiate prospective cohorts to investigate high priority, occupational exposures. Am. J. Ind. Med. 58:113–122, 2015.
    American Journal of Industrial Medicine 02/2015; 58(2):113-122. DOI:10.1002/ajim.22403 · 1.59 Impact Factor
  • Source
    Article: Response.
    Journal of Biochemical and Molecular Toxicology 07/2014; 28(7):291. DOI:10.1002/jbt.21591_2 · 1.32 Impact Factor

Full-text

Download
3 Downloads
Available from
Mar 31, 2015