Article

Genetic modification of the association of paraquat and Parkinson's disease

The Parkinson's Institute, Sunnyvale, California, USA. .
Movement Disorders (Impact Factor: 5.63). 11/2012; 27(13). DOI: 10.1002/mds.25216
Source: PubMed

ABSTRACT Paraquat is one of the most widely used herbicides worldwide. It produces a Parkinson's disease (PD) model in rodents through redox cycling and oxidative stress (OS) and is associated with PD risk in humans. Glutathione transferases provide cellular protection against OS and could potentially modulate paraquat toxicity. We investigated PD risk associated with paraquat use in individuals with homozygous deletions of the genes encoding glutathione S-transferase M1 (GSTM1) or T1 (GSTT1). Eighty-seven PD subjects and 343 matched controls were recruited from the Agricultural Health Study, a study of licensed pesticide applicators and spouses in Iowa and North Carolina. PD was confirmed by in-person examination. Paraquat use and covariates were determined by interview. We genotyped subjects for homozygous deletions of GSTM1 (GSTM1*0) and GSTT1 (GSTT1*0) and tested interaction between paraquat use and genotype using logistic regression. Two hundred and twenty-three (52%) subjects had GSTM1*0, 95 (22%) had GSTT1*0, and 73 (17%; all men) used paraquat. After adjustment for potential confounders, there was no interaction with GSTM1. In contrast, GSTT1 genotype significantly modified the association between paraquat and PD. In men with functional GSTT1, the odds ratio (OR) for association of PD with paraquat use was 1.5 (95% confidence interval [CI]: 0.6-3.6); in men with GSTT1*0, the OR was 11.1 (95% CI: 3.0-44.6; P interaction: 0.027). Although replication is needed, our results suggest that PD risk from paraquat exposure might be particularly high in individuals lacking GSTT1. GSTT1*0 is common and could potentially identify a large subpopulation at high risk of PD from oxidative stressors such as paraquat. © 2012 Movement Disorder Society.

Download full-text

Full-text

Available from: Aaron Blair, Mar 31, 2015
0 Followers
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prospective cohorts have played a major role in understanding the contribution of diet, physical activity, medical conditions, and genes to the development of many diseases, but have not been widely used for occupational exposures. Studies in agriculture are an exception. We draw upon our experience using this design to study agricultural workers to identify conditions that might foster use of prospective cohorts to study other occupational settings. Prospective cohort studies are perceived by many as the strongest epidemiologic design. It allows updating of information on exposure and other factors, collection of biologic samples before disease diagnosis for biomarker studies, assessment of effect modification by genes, lifestyle, and other occupational exposures, and evaluation of a wide range of health outcomes. Increased use of prospective cohorts would be beneficial in identifying hazardous exposures in the workplace. Occupational epidemiologists should seek opportunities to initiate prospective cohorts to investigate high priority, occupational exposures. Am. J. Ind. Med. 58:113–122, 2015.
    American Journal of Industrial Medicine 02/2015; 58(2):113-122. DOI:10.1002/ajim.22403 · 1.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heavy metals, various pesticide and herbicides are implicated as risk factors for human health. Paraquat, maneb, and rotenone, carbamate, and organophosphorous insecticides are examples of toxicants for which acute and chronic exposure are associated with multiple neurological disorders including Parkinson's disease. Nevertheless, the role of pesticide exposure in neurodegenerative diseases is not clear-cut, as there are inconsistencies in both the epidemiological and preclinical research. The aim of this short review is to show that at least, some of the inconsistencies are related to individual differences in susceptibility to the effects of neurotoxicants, individual differences that can be traced to the genetic constitution of the individuals and animals studies, i.e., host-based susceptibility.
    Frontiers in Genetics 09/2014; 5:327. DOI:10.3389/fgene.2014.00327
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is a multi-factorial disorder with a complex etiology including genetic risk factors, environmental exposures and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+] and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose 6-phosphate, fructose 6-phosphate, glucono-1,5-lactone and erythrose 4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose 6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat- induced oxidative stress and cell death. These results suggest that paraquat "hijacks" the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress and cell death. Our study clearly demonstrates that alterations in energy metabolism, which are specific for distinct environmental toxins, are not bystanders to energy failure, but also contribute significant to cell death progression.
    ACS Chemical Biology 09/2014; 9(9):2032-2048. DOI:10.1021/cb400894a · 5.36 Impact Factor