Article

Estrogen and Cancer.

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China and Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China.
Annual Review of Physiology (Impact Factor: 19.55). 10/2012; DOI: 10.1146/annurev-physiol-030212-183708
Source: PubMed

ABSTRACT Estrogen exhibits a broad spectrum of physiological functions ranging from regulation of the menstrual cycle and reproduction to modulation of bone density, brain function, and cholesterol mobilization. Despite the beneficial actions of endogenous estrogen, sustained exposure to exogenous estrogen is a well-established risk factor for various cancers. We summarize our current understanding of the molecular mechanisms of estrogen signaling in normal and cancer cells and discuss the major challenges to the existing antiestrogen therapy. Expected final online publication date for the Annual Review of Physiology Volume 75 is February 10, 2013. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.

0 Bookmarks
 · 
180 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionRecurrence or early metastasis remains the predominant cause of mortality in patients with estrogen receptor positive (ER+) mammary carcinoma (MC). However, the molecular mechanisms underlying the initial progression of ER¿+¿MC to metastasis remains poorly understood. Trefoil factor 3 (TFF3) is an estrogen-responsive oncogene in MC. Herein, we provide evidence for a functional role of TFF3 in metastatic progression of ER¿+¿MC.Methods The association of TFF3 expression with clinicopathological parameters and survival outcome in a cohort of MC patients was assessed by immunohistochemistry. The expression of TFF3 in MCF7 and T47D cells was modulated by forced expression or siRNA-mediated depletion of TFF3. mRNA and protein levels were determined using qPCR and western blot. The functional effect of modulation of TFF3 expression in MC cells was determined in vitro and in vivo. Mechanistic analyses were performed using reporter constructs, modulation of signal transducer and activator of transcription 3 (STAT3) expression, and pharmacological inhibitors against c-SRC and STAT3 activity.ResultsTFF3 protein expression was positively associated with larger tumour size, lymph node metastasis, higher stage, and poor survival outcome. Forced expression of TFF3 in ER¿+¿MC cells stimulated colony scattering, cell adhesion to a Collagen I-coated matrix, colony formation on a Collagen I- or Matrigel-coated matrix, endothelial cell adhesion, and transmigration through an endothelial cell barrier. In vivo, forced expression of TFF3 in MCF7 cells stimulated the formation of metastatic nodules in animal lungs. TFF3 regulation of the mRNA levels of epithelial, mesenchymal, and metastatic-related genes in ER¿+¿MC cells were consistent with the altered cell behaviour. Forced expression of TFF3 in ER¿+¿MC cells stimulated phosphorylation of c-SRC that subsequently increased STAT3 activity, which lead to the downregulation of E-cadherin. siRNA-mediated depletion of TFF3 reduced the invasiveness of ER¿+¿MC cells.ConclusionsTFF3 expression predicts metastasis and poor survival outcome of patients with MC and functionally stimulates cellular invasion and metastasis of ER¿+¿MC cells. Adjuvant functional inhibition of TFF3 may therefore be considered to ameliorate outcome of ER¿+¿MC patients.
    Breast cancer research: BCR 09/2014; 16(5):429. · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence demonstrates a connection between growth factor function (including brain-derived neurotrophic factor, BDNF), glucocorticoid levels (one of the steroid hormones), and the pathophysiology of depressive disorders. Because both BDNF and glucocorticoids regulate synaptic function in the central nervous system, their functional interaction is of major concern. Interestingly, alterations in levels of estrogen, another steroid hormone, may play a role in depressive-like behavior in postpartum females with fluctuations of BDNF-related molecules in the brain. BDNF and cytokines, which are protein regulators of inflammation, stimulate multiple intracellular signaling cascades involved in neuropsychiatric illness. Pro-inflammatory cytokines may increase vulnerability to depressive symptoms, such as the increased risk observed in patients with cancer and/or autoimmune diseases. In this review, we discuss the possible relationship between inflammation and depression, in addition to the cross-talk among cytokines, BDNF, and steroids. Further, since nutritional status has been shown to affect critical pathways involved in depression through both BDNF function and the monoamine system, we also review current evidence surrounding diet and supplementation (e.g., flavonoids) on BDNF-mediated brain functions.
    Frontiers in Psychiatry 09/2014; 5:136.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemopreventive potential for human breast cancer was assessed in vitro with Cnidii Rhizoma extract. Cnidii Rhizoma inhibited cell proliferation in estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) human breast carcinoma cell lines. Cytochrome P450 (CYP) 1A1-mediated ethoxyresorufin O-deethylase (EROD) activity was inhibited by Cnidii Rhizoma in a concentration-dependent manner. In addition, Cnidii Rhizoma extract caused inhibition of microsomal aromatase (estrogen synthase) activity. Ornithine decarboxylase (ODC) activity was reduced to 40.3% of the control after 6 h treatment with Cnidii Rhizoma (5 mg/mL) in MCF-7 breast cancer cells. Cnidii Rhizoma extract markedly reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated matrix metalloproteinase (MMP)-9 activity. These results suggest that Cnidii Rhizoma could be of therapeutic value in preventing human breast cancer.
    Biotechnology and Bioprocess Engineering 03/2014; 19(2):363-368. · 1.22 Impact Factor