Are we getting closer to valid translational models for major depression?

Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania, Philadelphia, PA 19104, USA.
Science (Impact Factor: 31.48). 10/2012; 338(6103):75-9. DOI: 10.1126/science.1222940
Source: PubMed

ABSTRACT Advances in characterizing the neuropathology and functional dysconnectivity of depression and promising trials with emerging circuit-targeted and fast-onset therapeutics are providing unprecedented opportunities to gain deeper insight into the neurobiology of this devastating and pervasive disorder. Because of practical and ethical limitations to dissecting these mechanisms in humans, continued progress will critically depend on our ability to emulate aspects of depressive symptomatology and treatment response in nonhuman organisms. Although various experimental models are currently available, they often draw skepticism from both clinicians and basic research scientists. We review recent progress and highlight some of the best leads to diversify and improve discovery end points for preclinical depression research.

Download full-text


Available from: Olivier Berton, Jul 07, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Wistar Kyoto rat (WKY) has been proposed as an animal model of depression. The noradrenergic nucleus, locus coeruleus (LC) and the serotonergic nucleus, dorsal raphe (DRN) have been widely implicated in the ethiopathology of this disease. Thus, the goal of the present study was to investigate in vivo the electrophysiological properties of LC and DRN neurons from WKY rats, using single-unit extracellular techniques. Wistar (Wis) and Sprague Dawley (SD) rats were used as control strains. In the LC from WKY rats the basal firing rate was higher than that obtained in the Wis and SD strain, and burst firing activity also was greater compared to that in Wis strain but not in SD. The sensitivity of LC neurons to the inhibitory effect of the α2-adrenoceptor agonist, clonidine and the antidepressant reboxetine was lower in WKY rats compared to Wis, but not SD. Regarding DRN neurons, in WKY rats burst activity was lower than that obtained in Wis and SD rats, although no differences were observed in other firing parameters. Interestingly, while the sensitivity of DRN neurons to the inhibitory effect of the 5-HT1 A receptor agonist, 8-OH-DPAT was lower in the WKY strain, the antidepressant fluoxetine had a greater inhibitory potency in this rat strain compared to that recorded in the Wis group. Overall, these results point out important electrophysiological differences regarding noradrenergic and serotonergic systems between Wis and WKY rats, supporting the utility of the WKY rat as an important tool in the research of cellular basis of depression
    European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology 07/2014; 24(7). DOI:10.1016/j.euroneuro.2014.02.007 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of depression is facing major challenges: firstly, the need to develop new drugs with a faster onset of action and secondly, fulfilling the unmet needs of treatment resistant patients with more effective compounds. The chronic escape deficit (CED) is a valid and useful model of depression and is based on the induction of an escape deficit after exposure of rats to unavoidable stress. This behavioural model provides a method for evaluating the capacity of a treatment to revert the escape deficit. The majority of antidepressant drugs need to be administered for at least 3-4 weeks in order to revert the escape deficit. A 7-day treatment with escitalopram reverted the stress-induced escape deficit in approximately 50% of the animals. Escitalopram treatment decreased anxiety-related behaviours in stressed animals, by increasing the time spent in the central part of the arena with respect to saline treated stressed animals, without affecting exploratory related behaviours. Gene expression profiling was carried out in the hippocampus to identify new targets associated with the effects of stress or with the different response to escitalopram. By combining a well-validated animal model with gene expression analysis we demonstrated that the CED model may represent a perfect tool for studying treatment-resistant depression.
    Behavioural Brain Research 06/2014; 272. DOI:10.1016/j.bbr.2014.06.040 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Measuring anhedonic behavior in rodents is a challenging task as current methods display only moderate sensitivity to detect anhedonic phenotype and, consequently, results from different labs are frequently incongruent. Herein we present a newly-developed test, the Sweet Drive Test (SDT), which integrates food preference measurement in a non-aversive environment, with ultrasonic vocalizations (USVs) recording. Animals were placed in a soundproofed black arena, under red light illumination, and allowed to choose between regular and sweet food pellets. During the test trials, 50 KHz USVs, previously described to be associated with positive experiences, were recorded. In a first experimental approach, we demonstrate the ability of SDT to accurately characterize anhedonic behavior in animals chronically exposed to stress. In a subsequent set of experiments, we show that this paradigm has high sensitivity to detect mood-improving effects of antidepressants. The combined analysis of both food preference and the number of 50 KHz vocalizations in the SDT provides also a valuable tool to discriminate animals that responded to treatment from non-responder animals.
    Frontiers in Behavioral Neuroscience 03/2014; 8:74. DOI:10.3389/fnbeh.2014.00074 · 4.16 Impact Factor