Electron Microscopy and 3D Reconstruction Reveals Filamin Ig Domain Binding to F-Actin

Department of Physiology and Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
Journal of Molecular Biology (Impact Factor: 4.33). 10/2012; 424(5). DOI: 10.1016/j.jmb.2012.09.025
Source: PubMed

ABSTRACT Filamin A (FLNa) is an actin-binding protein that cross-links F-actin into networks of orthogonally branched filaments. FLNa also directs the networks to integrins while responding to mechanochemical signaling pathways. Flexible, 160-nm-long FLNa molecules are tail-to-tail dimers, each subunit of which contains an N-terminal calponin homology (CH)/actin-binding domain connected by a series of 24 immunoglobulin (Ig) repeats to a dimerization site at their C-terminal end. Whereas the contribution of the CH domains to F-actin affinity is weak (apparent K(a)~10(5)), the binding of the intact protein to F-actin is strong (apparent K(a)~10(8)), suggesting involvement of additional parts of the molecule in this association. Indeed, previous results indicate that Ig repeats along FLNa contribute significantly to the strength of the actin filament interaction. In the current study, we used electron microscopy and three-dimensional reconstruction to elucidate the structural basis of the Ig repeat-F-actin binding. We find that FLNa density is clearly delineated in reconstructions of F-actin complexed either with a four-Ig-repeat segment of FLNa containing Ig repeat 10 or with immunoglobulin-like filamin A repeat (IgFLNa)10 alone. The mass attributable to IgFLNa10 lies peripherally along the actin helix over the N-terminus of actin subdomain 1. The interaction appears to be specific, since no other fragment of the FLNa molecule or individual Ig repeats examined, besides ones with CH domains, decorated F-actin filaments or were detected in reconstructions. We conclude that the combined interactions of CH domains and the IgFLNa10 repeat provide the binding strength of the whole FLNa molecule and propose a model for the association of IgFLNa10 on actin filaments.

1 Follower
9 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here we report the NMR structure of the actin-binding domain contained in the cell adhesion protein palladin. Previously we demonstrated that one of the immunoglobulin domains of palladin (Ig3) is both necessary and sufficient for direct F-actin binding in vitro. In this study, we identify two basic patches on opposite faces of Ig3 that are critical for actin binding and crosslinking. Sedimentation equilibrium assays indicate that the Ig3 domain of palladin does not self-associate. These combined data are consistent with an actin crosslinking mechanism that involves concurrent attachment of two actin filaments by a single palladin molecule by an electrostatic mechanism. Palladin mutations that disrupt actin binding show altered cellular distributions and morphology of actin in cells, revealing a functional requirement for the interaction between palladin and actin in vivo.
    Journal of Molecular Biology 06/2013; 425(18). DOI:10.1016/j.jmb.2013.06.016 · 4.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell migration, phagocytosis and cytokinesis are mechanically intensive cellular processes that are mediated by the dynamic assembly and contractility of the actin cytoskeleton. GAPs (GTPase-activating proteins) control activities of the Rho family proteins including Cdc42, Rac1 and RhoA, which are prominent upstream regulators of the actin cytoskeleton. The present review concerns a class of Rho GAPs, FilGAP (ARHGAP24 gene product) and its close relatives (ARHGAP22 and AHRGAP25 gene products). FilGAP is a GAP for Rac1 and a binding partner of FLNa (filamin A), a widely expressed F-actin (filamentous actin)-cross-linking protein that binds many different proteins that are important in cell regulation. Phosphorylation of FilGAP serine/threonine residues and binding to FLNa modulate FilGAP's GAP activity and, as a result, its ability to regulate cell protrusion and spreading. FLNa binds to FilGAP at F-actin-enriched sites, such as at the leading edge of the cell where Rac1 activity is controlled to inhibit actin assembly. FilGAP then dissociates from FLNa in actin networks by myosin-dependent mechanical deformation of FLNa's FilGAP-binding site to relocate at the plasma membrane by binding to polyphosphoinositides. Since actomyosin contraction is activated downstream of RhoA-ROCK (Rho-kinase), RhoA activity regulates Rac1 through FilGAP by signalling to the force-generating system. FilGAP and the ARHGAP22 gene product also act as mediators between RhoA and Rac1 pathways, which lead to amoeboid and mesenchymal modes of cell movements respectively. Therefore FilGAP and its close relatives are key regulators that promote the reciprocal inhibitory relationship between RhoA and Rac1 in cell shape changes and the mesenchymal-amoeboid transition in tumour cells.
    Biochemical Journal 07/2013; 453(1):17-25. DOI:10.1042/BJ20130290 · 4.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The actin-binding protein filamin A (FLNa) regulates neuronal migration during development, yet its roles in the mature brain remain largely obscure. Here we probed the effects of FLNa on the regulation of ion channels that influence neuronal properties. We focused on the HCN1 channels that conduct Ih, a hyperpolarization-activated current crucial for shaping intrinsic neuronal properties. Whereas regulation of HCN1 channels by FLNa has been observed in melanoma cell lines, its physiological relevance to neuronal function and the underlying cellular pathways that govern this regulation have remained unknown. Using a combination of mutational, pharmacological, and imaging approaches, we find here that FLNa facilitates a selective and reversible dynamin-dependent internalization of HCN1 channels in HEK293 cells. This internalization is accompanied by a redistribution of HCN1 channels on the cell surface, by accumulation of the channels in endosomal compartments, and by reduced Ih density. In hippocampal neurons, expression of a truncated dominant negative FLNa enhances the expression of native HCN1. Furthermore, acute abrogation of HCN1-FLNa interaction in neurons, with the use of decoy peptides that mimic the FLNa-binding domain of HCN1, abolishes the punctate distribution of HCN1 channels in neuronal cell bodies, augments endogenous Ih, and enhances the rebound-response ('voltage-sag') of the neuronal membrane to transient hyperpolarizing events. Together, these results support a major function of FLNa in modulating ion-channel abundance and membrane trafficking in neurons, thereby shaping their biophysical properties and function.
    Journal of Biological Chemistry 01/2014; 289(9). DOI:10.1074/jbc.M113.522060 · 4.57 Impact Factor
Show more