Article

Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study.

Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address: .
The Lancet Neurology (Impact Factor: 21.82). 10/2012; 11(11):963-72. DOI: 10.1016/S1474-4422(12)70213-2
Source: PubMed

ABSTRACT Microcystic macular oedema (MMO) of the retinal inner nuclear layer (INL) has been identified in patients with multiple sclerosis (MS) by use of optical coherence tomography (OCT). We aimed to determine whether MMO of the INL, and increased thickness of the INL are associated with disease activity or disability progression.
This retrospective study was done at the Johns Hopkins Hospital (Baltimore, MD, USA), between September, 2008, and March, 2012. Patients with MS and healthy controls underwent serial OCT scans and clinical assessments including visual function. OCT scanning, including automated intraretinal layer segmentation, yielded thicknesses of the retinal nerve fibre layer, the ganglion cell layer plus inner plexiform layer, the INL plus outer plexiform layer (the combined thickness of these layers was used as a surrogate measure of INL thickness), and the outer nuclear layer. Patients with MS also underwent annual brain MRI scans. Disability scores were compared with the Wilcoxon rank-sum test. Mixed-effects linear regression was used to compare OCT measures and letter-acuity scores. Logistic regression was used to examine the relations of baseline OCT thicknesses with clinical and radiological parameters.
164 patients with MS and 60 healthy controls were assessed. Mean follow-up was 25·8 months (SD 9·1) for patients with MS and 22·4 months (11·4) for healthy controls. Ten (6%) patients with MS had MMO during at least one study visit; MMO was visible at baseline in four of these patients. Healthy controls did not have MMO. Patients with MS and MMO had higher baseline MS severity scores (median 5·93 [range 2·44-8·91]) than those who did not have MMO at any time during the study (151 patients; 3·81 [0·13-9·47]; p=0·032), although expanded disability status scale (EDSS) scores were not significantly different (5·2 [1·0-6·5] for patients with MS and MMO vs 2·5 [0·0-8·0] for those without MMO; p=0·097). The eyes of patients with MS and MMO (12 eyes) versus those without MMO (302 eyes) had lower letter-acuity scores (100% contrast, p=0·017; 2·5% contrast, p=0·031; 1·25% contrast, p=0·014), and increased INL thicknesses (p=0·003) at baseline. Increased baseline INL thickness in patients with MS was associated with the development of contrast-enhancing lesions (p=0·007), new T2 lesions (p=0·015), EDSS progression (p=0·034), and relapses in patients with relapsing-remitting MS (p=0·008) during the study. MMO was not associated with disease activity during follow-up.
Increased INL thickness on OCT is associated with disease activity in MS. If this finding is confirmed, INL thickness could be a useful predictor of disease progression in patients with MS.
National Multiple Sclerosis Society, National Eye Institute, Braxton Debbie Angela Dillon and Skip Donor Advisor Fund.

1 Follower
 · 
86 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microcystic macular edema (MME) manifests as small, hyporeflective cystic areas within the retina. For reasons that are still largely unknown, a small proportion of patients with multiple sclerosis (MS) develop MME‚ÄĒpredominantly in the inner nuclear layer. These cystoid spaces, denoted pseudocysts, can be imaged using optical coherence tomography (OCT) where they appear as small, discrete, low intensity areas with high contrast to the surrounding tissue. The ability to automatically segment these pseudocysts would enable a more detailed study of MME than has been previously possible. Although larger pseudocysts often appear quite clearly in the OCT images, the multi-frame averaging performed by the Spectralis scanner adds a significant amount of variability to the appearance of smaller pseudocysts. Thus, simple segmentation methods only incorporating intensity information do not perform well. In this work, we propose to use a random forest classifier to classify the MME pixels. An assortment of both intensity and spatial features are used to aid the classification. Using a cross-validation evaluation strategy with manual delineation as ground truth, our method is able to correctly identify 79% of pseudocysts with a precision of 85%. Finally, we constructed a classifier from the output of our algorithm to distinguish clinically identified MME from non-MME subjects yielding an accuracy of 92%.
    Biomedical Optics Express 01/2015; 6(1). DOI:10.1364/BOE.6.000155
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Visual impairment is a key manifestation of multiple sclerosis. Acute optic neuritis is a common, often presenting manifestation, but visual deficits and structural loss of retinal axonal and neuronal integrity can occur even without a history of optic neuritis. Interest in vision in multiple sclerosis is growing, partially in response to the development of sensitive visual function tests, structural markers such as optical coherence tomography and magnetic resonance imaging, and quality of life measures that give clinical meaning to the structure-function correlations that are unique to the afferent visual pathway. Abnormal eye movements also are common in multiple sclerosis, but quantitative assessment methods that can be applied in practice and clinical trials are not readily available. We summarize here a comprehensive literature search and the discussion at a recent international meeting of investigators involved in the development and study of visual outcomes in multiple sclerosis, which had, as its overriding goals, to review the state of the field and identify areas for future research. We review data and principles to help us understand the importance of vision as a model for outcomes assessment in clinical practice and therapeutic trials in multiple sclerosis. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.
    Brain 11/2014; 138(1). DOI:10.1093/brain/awu335
  • Multiple Sclerosis 09/2014; 20(10):1296-1298. DOI:10.1177/1352458514541509