A Designed Protein for the Specific and Covalent Heteroconjugation of Biomolecules

Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne, Switzerland.
Bioconjugate Chemistry (Impact Factor: 4.51). 09/2008; 19(9):1753-6. DOI: 10.1021/bc800268j
Source: PubMed


Bioconjugations often rely on adaptor molecules to cross-link different biomolecules. In this work, we introduce the molecular adaptor covalin, which is a protein chimera of two self-labeling proteins with nonoverlapping substrate specificity. Covalin permits a selective and covalent heteroconjugation of biomolecules displaying appropriate functional groups. Examples for the use of covalin include the specific heteroconjugation of a reporter enzyme to an antibody and of molecular probes to the surface of living cells. The efficiency and specificity of covalin-based bioconjugations together with the availability of a large variety of substrates create immediate and ubiquitous applications for covalin in bioconjugate chemistry.

10 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Induction of protein--protein interactions is a daunting challenge, but recent studies show promise for small molecules that specifically bring two or more protein molecules together for enhanced or novel biological effect. The first such bifunctional molecules were the rapamycin- and FK506-based "chemical inducers of dimerization", but the field has since expanded with new molecules and new applications in chemical genetics and cell biology. Examples include coumermycin-mediated gyrase B dimerization, proteolysis targeting chimeric molecules (PROTACs), drug hybrids, and strategies for exploiting multivalency in toxin binding and antibody recruitment. This Review discusses these and other advances in the design and use of bifunctional small molecules and potential strategies for future systems.
    ACS Chemical Biology 12/2008; 3(11):677-692. DOI:10.1021/cb8001792 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Islet transplantation has emerged as a promising cell-based therapy for the treatment of diabetes, but its clinical efficacy remains limited by deleterious host responses that underlie islet destruction. In this dissertation, we describe the assembly of cell surface-supported thin films that confer molecular-level control over the composition and biophysicochemical properties of the islet surface with implications for improving islet engraftment. Specifically, the process of layer-by-layer (LbL) polymer self assembly was employed to generate nanothin films of diverse architecture with tunable properties directly on the extracellular surface of individual islets. Importantly, these studies are the first to report in vivo survival and function of nanoencapsulated cells, and have helped establish a conceptual framework for translating the diverse applications of LbL films to cellular interfaces. Additionally, through proper design of film constituents, coatings displaying ligands and bioorthogonally reactive handles may be generated, providing a modular strategy for incorporating exogenously derived regulators of host responses alongside native constituents of the islet surface. Towards this end, a strategy was developed to tether thrombomodulin to the islet surface in a site-specific manner, thereby facilitating local generation of the powerful anti-inflammatory agent, activated protein C. Collectively, this work offers novel biomolecular strategies for cell surface engineering with broad biomedical and biotechnological applications in cell-based therapeutics and beyond.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article proposes a systematic framework for unifying and defining nanoscience based on historic first principles and step logic that led to a “central paradigm” (i.e., unifying framework) for traditional elemental/small-molecule chemistry. As such, a Nanomaterials classification roadmap is proposed, which divides all nanomatter into Category I: discrete, well-defined and Category II: statistical, undefined nanoparticles. We consider only Category I, well-defined nanoparticles which are >90% monodisperse as a function of Critical Nanoscale Design Parameters (CNDPs) defined according to: (a) size, (b) shape, (c) surface chemistry, (d) flexibility, and (e) elemental composition. Classified as either hard (H) (i.e., inorganic-based) or soft (S) (i.e., organic-based) categories, these nanoparticles were found to manifest pervasive atom mimicry features that included: (1) a dominance of zero-dimensional (0D) core–shell nanoarchitectures, (2) the ability to self-assemble or chemically bond as discrete, quantized nanounits, and (3) exhibited well-defined nanoscale valencies and stoichiometries reminiscent of atom-based elements. These discrete nanoparticle categories are referred to as hard or soft particle nanoelements. Many examples describing chemical bonding/assembly of these nanoelements have been reported in the literature. We refer to these hard:hard (H-n:H-n), soft:soft (S-n:S-n), or hard:soft (H-n:S-n) nanoelement combinations as nanocompounds. Due to their quantized features, many nanoelement and nanocompound categories are reported to exhibit well-defined nanoperiodic property patterns. These periodic property patterns are dependent on their quantized nanofeatures (CNDPs) and dramatically influence intrinsic physicochemical properties (i.e., melting points, reactivity/self-assembly, sterics, and nanoencapsulation), as well as important functional/performance properties (i.e., magnetic, photonic, electronic, and toxicologic properties). We propose this perspective as a modest first step toward more clearly defining synthetic nanochemistry as well as providing a systematic framework for unifying nanoscience. With further progress, one should anticipate the evolution of future nanoperiodic table(s) suitable for predicting important risk/benefit boundaries in the field of nanoscience. Electronic supplementary material The online version of this article (doi:10.1007/s11051-009-9632-z) contains supplementary material, which is available to authorized users.
    Journal of Nanoparticle Research 08/2009; 11(6):1251-1310. DOI:10.1007/s11051-009-9632-z · 2.18 Impact Factor
Show more