Article

Urinary and serum metal levels as indicators of embedded tungsten alloy fragments.

Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD 20889-5603, USA.
Military medicine (Impact Factor: 0.77). 09/2008; 173(8):754-8.
Source: PubMed

ABSTRACT Novel metal formulations are being used with increasing frequency on the modern battlefield. In many cases the health effects of these materials are not known, especially when they are embedded as fragments. Imaging techniques, although useful for determining location, provide no information regarding the composition of embedded fragments. In this report, we show that laboratory rats implanted with weapons-grade tungsten alloy (tungsten, nickel, and cobalt) pellets demonstrate significant increases in both urinary and serum levels of tungsten, nickel, and cobalt, which indicates that such measurements can provide information on the composition of embedded fragments. We also propose that, in addition to the requirements promulgated by the recent directive on analysis of metal fragments removed from Department of Defense personnel (Health Affairs policy 07-029), urine and blood/serum samples should be collected from personnel and analyzed for metal content. Such measurements could yield information on the composition of retained fragments and provide the basis for further treatment options.

0 Bookmarks
 · 
60 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tungsten alloy 91% tungsten, 6% nickel and 3% cobalt (WNC 91-6-3) induces rhabdomyosarcoma when implanted into rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91-6-3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91-6-3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91-6-3 occurred in rat but not human cells. In both rat and human cells, the transcriptional response to WNC 91-6-3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97-2-1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97-2-1 elicited similar responses to WNC 91-6-3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes.
    Toxicology and Applied Pharmacology 01/2015; 283(3). DOI:10.1016/j.taap.2015.01.013 · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of <1 month of the restoration duration, among which higher Ni excretions were found in those with either a higher number of teeth replaced by dental alloys or a higher index of metal crown not covered with the porcelain. Urinary levels of Cr were significantly higher in the three patient groups of <1, 1 to <3 and 3 to <6 months, especially in those with a higher metal crown exposure index. Linear curve estimations showed better relationships between urinary Ni and Cr in patients within 6-month groups. Our data suggested significant increased excretions of urinary Ni and Cr after dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.International Journal of Oral Science (2013) 5, doi:10.1038/ijos.2013.13; published online 5 April 2013.
    International Journal of Oral Science 04/2013; 5(1). DOI:10.1038/ijos.2013.13 · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heavy metal tungsten alloys (HMTAs) have been found to be safer alternatives for making military munitions. Recently, some studies demonstrating the toxic potential of HMTAs have raised concern over the safety issues, and further propose that HMTAs exposure may lead to physiological disturbances as well. To look for the systemic effect of acute toxicity of HMTA based metals salt, (1)H nuclear magnetic resonance ((1)H NMR) spectroscopic profiling of rat urine was carried out. Male Sprague Dawely rats were administered (intraperitoneal) low and high dose of mixture of HMTA based metals salt and NMR spectroscopy was carried out in urine samples collected at 8, 24, 72 and 120 h post dosing (p.d.). Serum biochemical parameters and liver histopathology were also conducted. The (1)H NMR spectra were analysed using multivariate analysis techniques to show the time- and dose-dependent biochemical variations in post HMTA based metals salt exposure. Urine metabolomic analysis showed changes associated with energy metabolism, amino acids, N-methyl nicotinamide, membrane and gut flora metabolites. Multivariate analysis showed maximum variation with best classification of control and treated group at 24 h p.d. At the end of the study, for the low dose group most of the changes at metabolite level reverted to control level except for the energy metabolites; whereas, in the high dose group some of the changes still persisted. The observations were well correlated with histopathological and serum biochemical parameters. Further, metabolic pathway analysis clarified that amongst all the metabolic pathways analysed, tricarboxylic acid cycle was most affected at all the time points indicating a switchover in energy metabolism from aerobic to anaerobic. These results suggest that exposure of rats to acute doses of HMTA based metals salt disrupts physiological metabolism with moderate injury to the liver, which might indirectly result from heavy metals induced oxidative stress.
    Chemico-biological interactions 01/2014; DOI:10.1016/j.cbi.2013.12.016 · 2.46 Impact Factor