High-throughput optical coherence tomography at 800 nm

Optics Express (Impact Factor: 3.53). 08/2012; 20(18):19612-7. DOI: 10.1364/OE.20.019612
Source: PubMed

ABSTRACT We report high-throughput optical coherence tomography (OCT) that offers 1,000 times higher axial scan rate than conventional OCT in the 800 nm spectral range. This is made possible by employing photonic time-stretch for chirping a pulse train and transforming it into a passive swept source. We demonstrate a record high axial scan rate of 90.9 MHz. To show the utility of our method, we also demonstrate real-time observation of laser ablation dynamics. Our high-throughput OCT is expected to be useful for industrial applications where the speed of conventional OCT falls short.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate an all-fiber breathing laser as inertia-free swept source (BLISS), with an ultra-compact design, for the emerging ultrafast bioimaging modalities. The unique feature of BLISS is its broadband wavelength-swept operation (∼60 nm) with superior temporal stability in terms of both long term (0.08 dB over 27 h) and shot-to-shot power variations (2.1%). More importantly, it enables a wavelength sweep rate of >10 MHz (∼7×108 nm/s)—orders-of-magnitude faster than the existing swept sources based on mechanical or electrical tuning techniques. BLISS thus represents a practical and new generation of swept source operating in the unmet megahertz swept-rate regime that aligns with the pressing need for scaling the optical bioimaging speed in ultrafast phenomena study or high-throughput screening applications. To showcase its utility in high-speed optical bioimaging, we here employ BLISS for ultrafast time-stretch microscopy and multi-MHz optical coherence tomography of the biological specimen at a single-shot line-scan rate or A-scan rate of 11.5 MHz.
    Optics Letters 12/2014; 39(23). DOI:10.1364/OL.39.006593 · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As the key prerequisite of high-speed volumetric structural and functional tissue imaging in real-time, scaling the A-scan rate beyond MHz has been one of the major pursuits in the development of optical coherence tomography (OCT). Along with a handful of techniques enabling multi-MHz, amplified optical time-stretch OCT (AOT-OCT) has recently been demonstrated as a viable alternative for ultrafast swept-source OCT well above MHz without the need for the mechanical wavelength-tuning mechanism. In this paper, we report a new generation of AOT-OCT demonstrating superior performance to its older generation and all other time-stretch-based OCT modalities in terms of shot-to-shot stability, sensitivity (~90dB), roll-off performance (>4 mm/dB) and A-scan rate (11.5 MHz). Such performance is mainly attributed to the combined contribution from the stable operation of the broadband and compact mode-locked fiber laser as well as the optical amplification in-line with the time-stretch process. The system allows us, for the first time, to deliver volumetric time-stretch-based OCT of biological tissues with the single-shot A-scan rate beyond 10 MHz. Comparing with the existing high-speed OCT systems, the inertia-free AOT-OCT shows promises to realize high-performance 3D OCT imaging at video rate.
    Biomedical Optics Express 04/2015; 6(4). DOI:10.1364/BOE.6.001340 · 3.50 Impact Factor
  • Source
    Journal of Biomedical Optics 03/2015; 20(3):30503. DOI:10.1117/1.JBO.20.3.030503 · 2.75 Impact Factor