Ocean tides from satellite altimetry and GRACE

Journal of Geodynamics (Impact Factor: 2.62). 09/2012; 59-60:28-38. DOI: 10.1016/j.jog.2011.10.009

ABSTRACT Satellite altimetry and GRACE observations carry both the signature of ocean tides and have in general complementary potential to resolve tidal constituents. It is therefore straightforward to perform a combined estimation of a global ocean tide model based on these two data sources. The present paper develops and applies a three step procedure for generating such a combined ocean tide model. First, the processing of multi-mission altimetry data is described along with the harmonic analysis applied to derive initially a pure empirical ocean tide model. Then the capability of GRACE to sense particular tidal constituents is elaborated and an approach to estimate tidal constituents from GRACE is outlined. In a third step a combination strategy with optimal stochastic data treatment is developed and applied to the altimetry-only tide model EOT08a and four years of GRACE observations, leading to the combined model EOT08ag. The differential contributions of GRACE to EOT08ag remain small and are mainly concentrated to the Arctic Ocean, an area with little or poor altimetry data. In comparison with other tide models, EOT08ag is validated by K-band range residuals, the impact on gravity field modelling and on precise orbit determination and by variance reduction of crossover differences. None of these comparison exhibits a significant improvement over the altimetry-only tide model except for a few areas above 60°N. Overall the improvements of the combination remain small and appear to stay below the current GRACE baseline accuracy.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The establishment and maintenance of marine structures and near-shore constructions together require having sufficient and accurate information about sea level variations not only in the present time but also in the near future as a reliable prediction. It is therefore necessary to analyze and predict Mean Sea Level (MSL) for a specific time considering all possible effects which may modify the accuracy and precision of the results. This study presents tidal harmonic decomposition solutions based on the first and second method of solving the Fourier series to analyze of the tides in January 2010 hourly and predict for the whole days of 2012 year considering the astronomical arguments and nodal corrections in Bandar-e-Abbas, Kangan Port and Bushehr Port tide gauge stations located in the Persian Gulf at the South of Iran. Moreover the accurate predictions of Mean Tide Level (MTL) are provided for the entire of 2012 year in each tide gauge station by excluding the effects of astronomical arguments and nodal corrections due to their unreasonable destroying effects. The MTL's fluctuations derived from the predicted results during 2012 year and different phases of the Moon show a very good agreement together according to tidegenerating forces theories.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reducing aliasing effects of insufficiently modelled high-frequent, non-tidal mass variations of the atmosphere, the oceans and the hydrosphere in gravity field models derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission is the topic of this study. The signal content of the daily GRACE gravity field model series (ITG-Kalman) is compared to high-frequency bottom pressure variability and terrestrially stored water variations obtained from recent numerical simulations from an ocean circulation model (OMCT) and two hydrological models (WaterGAP Global Hydrology Model, Land Surface Discharge Model). Our results show that daily estimates of ocean bottom pressure from the most recent OMCT simulations and the daily ITG-Kalman solutions are able to explain up to 40 % of extra-tropical sea-level variability in the Southern Ocean. In contrast to this, the daily ITG-Kalman series and simulated continental total water storage variability largely disagree at periods below 30 days. Therefore, as long as no adequate hydrological model will become available, the daily ITG-Kalman series can be regarded as a good initial proxy for high-frequency mass variations at a global scale. As a second result of this study, based on monthly solutions as well as daily observation residuals, it is shown that applying this GRACE-derived de-aliasing model supports the determination of the time-variable gravity field from GRACE data and the subsequent geophysical interpretation. This leads us to the recommendation that future satellite concepts for determining mass variations in the Earth system should be capable of observing higher frequeny signals with sufficient spatial resolution.
    Surveys in Geophysics 11/2014; 35(6):1251-1266. DOI:10.1007/s10712-014-9295-x · 5.11 Impact Factor