Article

Reciprocal Regulation of Akt and Oct4 Promotes the Self-Renewal and Survival of Embryonal Carcinoma Cells.

College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
Molecular cell (Impact Factor: 14.46). 10/2012; DOI: 10.1016/j.molcel.2012.08.030
Source: PubMed

ABSTRACT Signaling via the Akt serine/threonine protein kinase plays critical roles in the self-renewal of embryonic stem cells and their malignant counterpart, embryonal carcinoma cells (ECCs). Here we show that in ECCs, Akt phosphorylated the master pluripotency factor Oct4 at threonine 235, and that the levels of phosphorylated Oct4 in ECCs correlated with resistance to apoptosis and tumorigenic potential. Phosphorylation of Oct4 increased its stability and facilitated its nuclear localization and its interaction with Sox2, which promoted the transcription of the core stemness genes POU5F1 and NANOG. Furthermore, in ECCs, unphosphorylated Oct4 bound to the AKT1 promoter and repressed its transcription. Phosphorylation of Oct4 by Akt resulted in dissociation of Oct4 from the AKT1 promoter, which activated AKT1 transcription and promoted cell survival. Therefore, a site-specific, posttranslational modification of the Oct4 protein orchestrates the regulation of its stability, subcellular localization, and transcriptional activities, which collectively promotes the survival and tumorigenicity of ECCs.

0 Bookmarks
 · 
268 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Overexpression of Oct4, a stemness gene encoding a transcription factor, has been reported in several cancers. However, the mechanism by which Oct4 directs transcriptional program that leads to somatic cancer progression remains unclear. In this study, we provide mechanistic insight into Oct4-driven transcriptional network promoting drug-resistance and metastasis in lung cancer cell, animal and clinical studies. Through an integrative approach combining our Oct4 chromatin-immunoprecipitation sequencing and ENCODE datasets, we identified the genome-wide binding regions of Oct4 in lung cancer at promoter and enhancer of numerous genes involved in critical pathways which promote tumorigenesis. Notably, PTEN and TNC were previously undefined targets of Oct4. In addition, novel Oct4-binding motifs were found to overlap with DNA elements for Sp1 transcription factor. We provided evidence that Oct4 suppressed PTEN in an Sp1-dependent manner by recruitment of HDAC1/2, leading to activation of AKT signaling and drug-resistance. In contrast, Oct4 transactivated TNC independent of Sp1 and resulted in cancer metastasis. Clinically, lung cancer patients with Oct4 high, PTEN low and TNC high expression profile significantly correlated with poor disease-free survival. Our study reveals a critical Oct4-driven transcriptional program that promotes lung cancer progression, illustrating the therapeutic potential of targeting Oc4 transcriptionally regulated genes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The octamer-binding transcription factor 4 (Oct4) is essential for maintaining the self-renewal and pluripotency of embryonic stem cells (ESCs). Post-translational modifications (PTMs) of Oct4 critically control its structure, function and intracellular localization. However, determination of Oct4 PTM profiles has largely been restricted by the quantity and purity of the Oct4 protein samples required for mass spectrometric analyses. In this study, by incubating the E. coli-derived His-tagged Oct4 proteins with the whole cell lysates of a variety of human cells followed by retrieving the reacted Oct4 proteins with the Ni-NTA beads, we developed a labor- and cost-effective in vitro PTM method that allowed for mass spectrometric determination of the phosphorylation profiles of Oct4 proteins exposed to various cell-free systems. A number of Oct4 phosphorylation sites that were commonly present in all the cell-free systems or specifically present in a particular cellular context were identified, indicating that Oct4 is controlled by both common and distinct PTM regulatory pathways. Our work provided a proof-of-concept that such a cell-free system-based in vitro PTM approach can be applied to systematically map out the physiologically-relevant PTM sites in Oct4 proteins, which opened up an avenue to fully decipher the Oct4 PTM barcodes in various cellular contexts.
    Biochemical and Biophysical Research Communications 12/2014; 2014(3). · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oct4 is mainly expressed in embryonic stem cells (ESCs), germline stem cells, and embryonal carcinoma cells (ECCs) and plays an indispensable role in maintaining the pluripotency and self-renewal of these pluripotent stem cells. Akt serine/threonine kinase, a well-established anti-apoptosis and cell survival factor, has also been implicated as an important regulator of stemness. Emerging evidence indicated that Oct4 is reciprocally connected to Akt via a number of routes, and moreover, a direct interaction between Oct4 and Akt has recently been revealed. These components collectively form the Akt–Oct4 regulatory circuit. In this review, we summarize our current knowledge about the Akt–Oct4 regulatory circuit in ESCs and discuss its alterations in ECCs that may underlie the tumorigenesis of pluripotent stem cells.
    Chinese Science Bulletin 04/2014; 59(10):936-943. · 1.37 Impact Factor