Binding of ADP in the mitochondrial ADP/ATP carrier is driven by an electrostatic funnel

Equipe de dynamique des assemblages membranaires, UMR No. 7565 CNRS-UHP, Nancy Université, BP 239, 54506 Vandoeuvre-lès-Nancy cedex, France.
Journal of the American Chemical Society (Impact Factor: 11.44). 09/2008; 130(38):12725-33. DOI: 10.1021/ja8033087
Source: PubMed

ABSTRACT The ADP/ATP carrier (AAC) is a membrane protein of paramount importance for the energy-fueling function of the mitochondria, transporting ADP from the intermembrane space to the matrix and ATP in the opposite direction. On the basis of the high-resolution, 2.2-A structure of the bovine carrier, a total of 0.53 micros of classical molecular dynamics simulations were conducted in a realistic membrane environment to decipher the early events of ADP (3-) translocation across the inner membrane of the mitochondria. Examination of apo-AAC underscores the impermeable nature of the carrier, impeding passive transport of permeants toward the matrix. The electrostatic funnel illuminated from three-dimensional mapping of the electrostatic potential forms a privileged passageway anticipated to drive the diphosphate nucleotide rapidly toward the bottom of the internal cavity. This conjecture is verified in the light of repeated, independent numerical experiments, whereby the permeant is dropped near the mouth of the mitochondrial carrier. Systematic association of ADP (3-) to the crevice of the AAC, an early event in its transport across the inner membrane, is accompanied by the formation of an intricate network of noncovalent bonds. Simulations relying on the use of an adaptive biasing force reveal for the first time that the proposed binding site corresponds to a minimum of the free energy landscape delineating the translocation of ADP (3-) in the carrier. The present work paves the way to the design of novel nucleotides and new experiments aimed at unveiling key structural features in the chronology of ADP/ATP transport across the mitochondrial membrane.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modulation of cellular energy expenditure is fundamental to normal and pathological cell growth and differentiation. Mitochondria stores energy as a proton gradient across their inner membrane. Uncoupling proteins (UCPs) can dissipate the gradient to produce heat or regulate metabolite fluxes. UCP-mediated proton currents require fatty acids (FAs) and are blocked by nucleotides, but the molecular basis of these processes is unknown. We find, by nuclear magnetic resonance and functional mutagenesis, that UCP2 can bind FAs laterally through its peripheral site, and this intramembrane molecular recognition is essential for UCP2-catalyzed FA flipping across the membrane, which in turn is essential for proton translocation. The antagonist GDP binds inside the UCP2 cavity and perturbs its conformation, which can displace FA from the peripheral site as a mean of inhibiting proton currents. Our data provide a biophysical perspective of the intricate interplay of UCPs, FA, and nucleotides in determining proton fluxes in mitochondria.
    Cell Metabolism 08/2014; 20(3). DOI:10.1016/j.cmet.2014.07.004 · 16.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Mitochondrial carriers transport inorganic ions, nucleotides, amino acids, keto acids and cofactors across the mitochondrial inner membrane. Structurally they consist of three domains, each containing two transmembrane α-helices linked by a short α-helix and loop. The substrate binds to three major contact points in the central cavity. The class of substrate (e.g., adenine nucleotides) is determined by contact point II on transmembrane α-helix H4 and the type of substrate within the class (e.g., ADP, coenzyme A) by contact point I in H2, whereas contact point III on H6 is most usually a positively charged residue, irrespective of the type or class. Two salt bridge networks, consisting of conserved and symmetric residues, are located on the matrix and cytoplasmic side of the cavity. These residues are part of the gates that are involved in opening and closing of the carrier during the transport cycle, exposing the central substrate binding site to either side of the membrane in an alternating way. Here we revisit the plethora of mutagenesis data that have been collected over the last two decades to see if the residues in the proposed binding site and salt bridge networks are indeed important for function. The analysis shows that the major contact points of the substrate binding site are indeed crucial for function and in defining the specificity. The matrix salt bridge network is more critical for function than the cytoplasmic salt bridge network in agreement with its central position, but neither is likely to be involved in substrate recognition directly.
    Molecular Membrane Biology 03/2013; 30(2):149-159. DOI:10.3109/09687688.2012.737936 · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The mitochondrial ADP/ATP carrier imports ADP from the cytosol into the mitochondrial matrix for its conversion to ATP by ATP synthase and exports ATP out of the mitochondrion to replenish the eukaryotic cell with chemical energy. Here the substrate specificity of the human mitochondrial ADP/ATP carrier AAC1 was determined by two different approaches. In the first the protein was functionally expressed in Escherichia coli membranes as a fusion protein with maltose binding protein and the effect of excess of unlabeled compounds on the uptake of [(32)P]-ATP was measured. In the second approach the protein was expressed in the cytoplasmic membrane of Lactococcus lactis. The uptake of [(14)C]-ADP in whole cells was measured in the presence of excess of unlabeled compounds and in fused membrane vesicles loaded with unlabeled compounds to demonstrate their transport. A large number of nucleotides were tested, but only ADP and ATP are suitable substrates for human AAC1, demonstrating a very narrow specificity. Next we tried to understand the molecular basis of this specificity by carrying out molecular-dynamics simulations with selected nucleotides, which were placed at the entrance of the central cavity. The binding of the phosphate groups of guanine and adenine nucleotides is similar, yet there is a low probability for the base moiety to be bound, likely to be rooted in the greater polarity of guanine compared to adenine. AMP is unlikely to engage fully with all contact points of the substrate binding site, suggesting that it cannot trigger translocation.
    Molecular Membrane Biology 11/2012; DOI:10.3109/09687688.2012.745175 · 1.73 Impact Factor

François Dehez