Article

Perspective: Expanding role of cyclin dependent kinases in cytokine inducible gene expression

Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1060, USA.
Cell cycle (Georgetown, Tex.) (Impact Factor: 5.01). 10/2008; 7(17):2661-6. DOI: 10.4161/cc.7.17.6594
Source: PubMed

ABSTRACT The Positive Transcriptional Elongation Factor b (P-TEFb), a heterodimer of CDK9 and Cyclin T1, is widely implicated in control of basal gene expression. Here, P-TEFb is involved in transitioning paused RNA polymerase II to enter productive transcriptional elongation mode by phosphorylating negative elongation factors and Ser(2) of the heptad repeat in the RNA Pol II COOH terminal domain (CTD). This perspective will examine recent work in two unrelated inducible signaling pathways that illustrate the central role of P-TEFb in mediating cytokine inducible transcription networks. Specifically, P-TEFb has been recently discovered to play a key role in TNF-inducible NFkappaB activation and IL-6-inducible STAT3 signaling. In these signaling cascades, P-TEFb forms protein complexes with the activated nuclear RelA and STAT3 transcription factor in the cellular nucleoplasm, an association important for P-TEFb's promoter targeting. Studies using siRNA-mediated knockdown and/or selective CDK inhibitors show that P-TEFb plays a functional role in activation of a subset of NFkappaB-dependent targets and all STAT3-dependent genes studied to date. Interestingly, cytokine inducible genes that are sensitive to P-TEFb inhibition share an induction mechanism requiring inducible RNA Pol II recruitment. Chromatin immunoprecipitation studies have preliminarily indicated that this recruitment is dependent on CDK enzymatic activity. The potential of inhibiting P-TEFb as an anti-inflammatory therapy in innate immunity and systemic inflammation will be discussed.

0 Followers
 · 
58 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The positive transcription elongation factor b (P-TEFb) is involved in physiological and pathological events including inflammation, cancer, AIDS, and cardiac hypertrophy. The balance between its active and inactive form is tightly controlled to ensure cellular integrity. We report that the transcriptional repressor CTIP2 is a major modulator of P-TEFb activity. CTIP2 copurifies and interacts with an inactive P-TEFb complex containing the 7SK snRNA and HEXIM1. CTIP2 associates directly with HEXIM1 and, via the loop 2 of the 7SK snRNA, with P-TEFb. In this nucleoprotein complex, CTIP2 significantly represses the Cdk9 kinase activity of P-TEFb. Accordingly, we show that CTIP2 inhibits large sets of P-TEFb- and 7SK snRNA-sensitive genes. In hearts of hypertrophic cardiomyopathic mice, CTIP2 controls P-TEFb-sensitive pathways involved in the establishment of this pathology. Overexpression of the β-myosin heavy chain protein contributes to the pathological cardiac wall thickening. The inactive P-TEFb complex associates with CTIP2 at the MYH7 gene promoter to repress its activity. Taken together, our results strongly suggest that CTIP2 controls P-TEFb function in physiological and pathological conditions.
    Proceedings of the National Academy of Sciences 07/2013; DOI:10.1073/pnas.1220136110 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Signal transducer and activator of transcription 3 (STAT3) is activated by a variety of cytokines and growth factors. To generate a comprehensive data set of proteins interacting specifically with STAT3, we applied stable isotope labeling with amino acids in cell culture (SILAC). For high-affinity pull-down using streptavidin, we fused STAT3 with a short peptide tag allowing biotinylation in situ (bio-tag), which did not affect STAT3 functions. By this approach, 3,642 coprecipitated proteins were detected in human embryonic kidney-293 cells. Filtering using statistical and functional criteria finally extracted 136 proteins as putative interaction partners of STAT3. Both, a physical interaction network analysis and the enrichment of known and predicted interaction partners suggested that our filtering criteria successfully enriched true STAT3 interactors. Our approach identified numerous novel interactors, including ones previously predicted to associate with STAT3. By reciprocal coprecipitation, we were able to verify the physical association between STAT3 and selected interactors, including the novel interaction with TOX4, a member of the TOX high mobility group box family. Applying the same method, we next investigated the activation-dependency of the STAT3 interactome. Again, we identified both known and novel interactions. Thus, our approach allows to study protein-protein interaction effectively and comprehensively. The location, activity, function, degradation, and synthesis of proteins are significantly regulated by interactions of proteins with other proteins, biopolymers and small molecules. Thus, the comprehensive characterization of interactions of proteins in a given proteome is the next milestone on the path to understanding the biochemistry of the cell. In order to generate a comprehensive interactome dataset of proteins specifically interacting with a selected bait protein, we fused our bait protein STAT3 with a short peptide tag allowing biotinylation in situ (bio-tag). This bio-tag allows an affinity pull-down using streptavidin but affected neither the activation of STAT3 by tyrosine phosphorylation nor its transactivating potential. We combined SILAC for accurate relative protein quantification, subcellular fractionation to increase the coverage of interacting proteins, high-affinity pull-down and a stringent filtering method to successfully analyze the interactome of STAT3. With our approach we confirmed several already known and identified numerous novel STAT3 interactors. The approach applied provides a rapid and effective method, which is broadly applicable for studying protein-protein interactions and their dependency on post-translational modifications.
    Journal of proteomics 09/2013; 94. DOI:10.1016/j.jprot.2013.08.021 · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κB (NFκB) are activated by external stimuli, including virus infection, to translocate to the nucleus and bind genomic targets important for immunity and inflammation. To investigate RNA polymerase II (Pol II) recruitment and elongation in the human antiviral gene regulatory network, a comprehensive genome-wide analysis was conducted during the initial phase of virus infection. Results reveal extensive integration of IRF3 and NFκB with Pol II and associated machinery and implicate partners for antiviral transcription. Analysis indicates that both de novo polymerase recruitment and stimulated release of paused polymerase work together to control virus-induced gene activation. In addition to known messenger-RNA-encoding loci, IRF3 and NFκB stimulate transcription at regions not previously associated with antiviral transcription, including abundant unannotated loci that encode novel virus-inducible RNAs (nviRNAs). These nviRNAs are widely induced by virus infections in diverse cell types and represent a previously overlooked cellular response to virus infection.
    Cell Reports 08/2013; DOI:10.1016/j.celrep.2013.07.043 · 7.21 Impact Factor

Full-text (2 Sources)

Download
8 Downloads
Available from
May 26, 2014