Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes.

Department of Surgery, University of California, San Francisco, San Francisco, California 94121, USA.
Tissue Engineering Part A (Impact Factor: 4.07). 09/2008; 15(3):559-67. DOI: 10.1089/ten.tea.2007.0434
Source: PubMed

ABSTRACT Understanding cell biology of three-dimensional (3D) biological structures is important for more complete appreciation of in vivo tissue function and advancing ex vivo organ engineering efforts. To elucidate how 3D structure may affect hepatocyte cellular responses, we compared global gene expression of human liver hepatocellular carcinoma cell line (HepG2) cells cultured as monolayers on tissue culture dishes (TCDs) or as spheroids within rotating wall vessel (RWV) bioreactors. HepG2 cells grown in RWVs form spheroids up to 100 mum in diameter within 72 h and up to 1 mm with long-term culture. The actin cytoskeleton in monolayer cells show stress fiber formation while spheroids have cortical actin organization. Global gene expression analysis demonstrates upregulation of structural genes such as extracellular matrix, cytoskeletal, and adhesion molecules in monolayers, whereas RWV spheroids show upregulation of metabolic and synthetic genes, suggesting functional differences. Indeed, liver-specific functions of cytochrome P450 activity and albumin production are higher in the spheroids. Enhanced liver functions require maintenance of 3D structure and environment, because transfer of spheroids to a TCD results in spheroid disintegration and subsequent loss of function. These findings illustrate the importance of physical environment on cellular organization and its effects on hepatocyte processes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Delivery of therapeutic agents selectively to tumor tissue, which is referred as "targeted delivery," is one of the most ardently pursued goals of cancer therapy. Recent advances in nanotechnology enable numerous types of nanoparticles (NPs) whose properties can be designed for targeted delivery to tumors. In spite of promising early results, the delivery and therapeutic efficacy of the majority of NPs are still quite limited. This is mainly attributed to the limitation of currently available tumor models to test these NPs and systematically study the effects of complex transport and pathophysiological barriers around the tumors. In this study, thus, we developed a new in vitro tumor model to recapitulate the tumor microenvironment determining the transport around tumors. This model, named tumor-microenvironment-on-chip (T-MOC), consists of 3-dimensional microfluidic channels where tumor cells and endothelial cells are cultured within extracellular matrix under perfusion of interstitial fluid. Using this T-MOC platform, the transport of NPs and its variation due to tumor microenvironmental parameters have been studied including cut-off pore size, interstitial fluid pressure, and tumor tissue microstructure. The results suggest that T-MOC is capable of simulating the complex transport around the tumor, and providing detailed information about NP transport behavior. This finding confirms that NPs should be designed considering their dynamic interactions with tumor microenvironment.
    Journal of Controlled Release 09/2014; · 7.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been demonstrated that three-dimensional (3D) cell culture models represent fundamental tools for the comprehension of cellular phenomena both for normal and cancerous tissues. Indeed, the microenvironment affects the cellular behavior as well as the response to drugs. In this study, we performed a morphological analysis on a hepatocarcinoma cell line, HepG2, grown for 24 days inside a bioartificial hydrogel composed of poly(vinyl alcohol) (PVA) and gelatin (G) to model a hepatocellular carcinoma (HCC) in 3D. Morphological features of PVA/G hydrogels were investigated, resulting to mimic the trabecular structure of liver parenchyma. A histologic analysis comparing the 3D models with HepG2 cell monolayers and tumor specimens was performed. In the 3D setting, HepG2 cells were viable and formed large cellular aggregates showing different morphotypes with zonal distribution. Furthermore, β-actin and α5β1 integrin revealed a morphotype-related expression; in particular, the frontline cells were characterized by a strong immunopositivity on a side border of their membrane, thus suggesting the formation of lamellipodia-like structures apt for migration. Based on these results, we propose PVA/G hydrogels as valuable substrates to develop a long term 3D HCC model that can be used to investigate important aspects of tumor biology related to migration phenomena.
    Journal of functional biomaterials. 01/2015; 6(1):16-32.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Corneal stromal cells transform to precursor cells in spheroid culture. We determined whether keratocytes derived from spheroid culture of murine corneal stromal cells resemble tissue resident keratocytes.
    PLoS ONE 11/2014; 9(11):e112781. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014