GABA A receptor subtype selectivity underlying selective anxiolytic effect of baicalin.

Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Neuropharmacology (Impact Factor: 4.11). 09/2008; 55(7):1231-7. DOI: 10.1016/j.neuropharm.2008.07.040
Source: PubMed

ABSTRACT Baicalin, a naturally occurring flavonoid, was previously reported to induce anxiolytic-like effect devoid of sedation and myorelaxation in mice, acting through type A gamma-aminobutyric acid (GABA(A)) receptor benzodiazepine (BZ) site. The present study further expanded the behavioral pharmacology profile of baicalin and subtype selectivity was explored as a possible mechanism underlying its in vivo effects on mice. Baicalin was characterized using convulsion, memory, and motor function related animal tests; and its selectivity towards recombinant GABA(A) receptor subtypes expressed in HEK 293T cells was determined by radioligand binding assay and electrophysiological studies. In the picrotoxin-induced seizure, step-through passive avoidance and rotarod tests, the anticonvulsant, amnesic and motor incoordination effects commonly associated with classical BZs were not observed when baicalin was administered at effective anxiolytic doses, demonstrating a separation of the anticonvulsant, amnesic and motor incoordination effects from the anxiolytic-like effect. Although baicalin exhibited higher binding affinity for the alpha1-containing GABA(A) subtype compared with alpha2-, alpha3-, and alpha5-containing subtypes, this was not statistically significant. In contrast to the classical BZ diazepam, baicalin showed significant preference for alpha2- and alpha3-containing subtypes compared to alpha1- and alpha5-containing subtypes in whole-cell patch clamp studies (P < 0.01). Its subtype selectivity suggested that baicalin exerted its in vivo anxiolytic-like effect mainly through the alpha2- and alpha3-containing subtypes. Therefore, the present study revealed an underlying mechanism for the selective anxiolytic profile of baicalin, suggesting alpha2- and alpha3-containing subtypes were important drug targets for flavonoid-based anxiolytics.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Phytol, a branched chain unsaturated alcohol, is particularly interesting because it is an isolated compound from essential oils of different medicinal plant. The aim of study was to evaluate the anxiolytic-like effects of phytol in animal models to clarify their possible action mechanism. After acute intraperitoneal treatment with phytol at doses of 25, 50 and 75mg/kg were utilized behavioral models of open-field, elevated-plus-maze, rota-rod, light-dark, marble-burying and pentobarbital sleeping time tests. In open field test, phytol (25, 50 and 75mg/kg) [p<0.01] increased the number of crossings and rearings. However, the number of groomings [p<0.01] was reduced. Likewise, the number of entries and the time spent in light space were increased [p<0.01] while the number of marble-burying was decreased [p<0.001], in elevated-plus-maze, light-dark and marble-burying tests, respectively. In motor activity test, phytol (75mg/kg) impaired the rota-rod performance of mice [p<0.01]. In pentobarbital sleeping time test, phytol 75mg/kg decreased for latency of sleeping and phytol (25, 50 and 75mg/kg) increased the sleep time when compared to negative control [p<0.05]. All these effects were reversed by pre-treatment with flumazenil (2.5mg/kg, i.p.), similarly to those observed with diazepam (2mg/kg, i.p.; positive control) suggesting the phytol presents mechanism of action by interaction with GABAergic system. These findings suggest that acute administration of phytol exerts an anxiolytic-like effect on mice. Furthermore, suppose that phytol interacts with GABAA receptor, probably at the receptor subtypes that mediate benzodiazepines effects, to produce sedative and anxiolytic activities.
    Brain research 12/2013; · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context: Scutellaria baicalensis Georgi (Lamiaceae) has been used as a traditional herbal preparation for the treatment of neuropsychiatric disorders in Asian countries for centuries. Objective: To evaluate the effects of S. baicalensis on morphine-induced drug dependence in rats. Materials and methods: In order to evaluate the effect of S. baicalensis and baicalin on morphine-induced dependence-like behavior, a water extract of S. baicalensis [500 mg/kg, intraperitoneally (i.p.)] or baicalin (50 mg/kg, i.p., a flavonoid found in S. baicalensis) was administered prior to morphine injection [5 and 2.5 mg/kg, respectively, subcutaneously (s.c.)] to rats for 8 and 4 d, respectively. Morphine-induced conditioned place preference was assessed by measuring the time spent in a drug-paired chamber. The effect of S. baicalensis on dopamine receptor supersensitivity (locomotor activity) and dopamine agonist-induced climbing behavior due to a single apomorphine treatment (2 mg/kg, s.c.) was also measured. Results: At 50 mg/kg, a water extract of S. baicalensis decreased morphine (5 mg/kg)-induced conditioned place preference by 86% in rats. Apomorphine (2 mg/kg)-induced locomotor activity (dopamine receptor supersensitivity) in rats and climbing behavior in mice were attenuated after pretreatment with 500 mg/kg of S. baicalensis water extract by 41% and 56%, respectively. In addition, baicalin-reduced morphine-induced conditioned places preference by 86% in rats at 50 mg/kg. Discussion and conclusion: These results suggest that S. baicalensis can ameliorate drug addiction-related behavior through functional regulation of dopamine receptors.
    Pharmaceutical Biology 07/2014; · 1.21 Impact Factor
  • Source
    Journal of Pre-Clinical and Clinical Research. 01/2009; 3(2):095-098.